Math, asked by supriyapujahari4, 6 months ago

Hello Brainlians !!
Here is a question to check your physics. Quality answer needed.

1.) A body moving with an initial velocity of 1 m/s accelerates uniformly at 0.5 m/s2. Find out its velocity when it has a displacement of 48 m?

2.) For a body moving with an initial velocity u and uniform acceleration a. Find the displacement of the body in time t.

Please answer only if you know. Don't spam. Spammers now allowed. Correct answer will be appreciated. Don't be greedy for points. Please help !!

Answers

Answered by IdyllicAurora
119

Answer :-

 \: \\ \: \boxed{\boxed{\rm{\mapsto \: \: \: Firstly \: let's \: understand \: the \: concept \: used}}}

Here the concept of Equations of Motions has been used. We see that if we are given the values of time(t), acceleration(a), initial velocity(u) , finaly velocity (v) and displacement(d), the we can apply the values and satisfy the equation to get our solution.

Let's do it !!

_______________________________________________

Formula Used :-

 \: \\ \large{\boxed{\boxed{\sf{v^{2} \: \: - \: \: u^{2} \: \: = \: \: \bf{2as}}}}}

This is the Third Equation of Motion.

 \: \\ \large{\boxed{\boxed{\sf{s \: = \: \bf{ut \: \: + \: \: \dfrac{1}{2} \: \times \: at^{2}}}}}}

This is the Second Equation of Motion.

_______________________________________________

Solution :-

1.) A body moving with an initial velocity of 1 m/s accelerates uniformly at 0.5 m/s2. Find out its velocity when it has a displacement of 48 m?

-----------------------------------------------------------

Answer.) Given,

» Initial Velocity of the body = u = 1 m/sec

» Acceleration of the body = a = 0.5 m/sec²

» Displacement done by body = s = 48 m

Let the final velocity of the body be 'v' m/sec.

Then, by using the Third Equation of Motion, we get,

 \: \\ \qquad \large{\sf{:\Longrightarrow \: \: \: v^{2} \: \: - \: \: u^{2} \: \: = \: \: \bf{2as}}}

 \: \\ \qquad \large{\sf{:\Longrightarrow \: \: \: v^{2} \: \: - \: \: (1 \: m\:sec^{-1})^{2} \: \: = \: \: \bf{2 \: \times \: 0.5 \: m\:sec^{-2} \: \times \: 48 \: m}}}

 \: \\ \qquad \large{\sf{:\Longrightarrow \: \: \: v^{2} \: \: - \: \: (1 \: m^{2}\:sec^{-2}) \: \: = \: \: \bf{48 \: m^{2}\:sec^{-2}}}}

 \: \\ \qquad \large{\sf{:\Longrightarrow \: \: \: v^{2} \: \:  \: \: = \: \: \bf{48 \: m^{2}\:sec^{-2}} \: \: + \: \: (1 \: m^{2}\:sec^{-2})\: \: = \: \: 49 \: \: m^{2}\:sec^{-2}}}

 \: \\ \qquad \large{\sf{:\Longrightarrow \: \: \: v \: \:  \: \: = \: \: \bf{\sqrt{49 \: \: m^{2}\:sec^{-2}} \: \: = \: \: \underline{\underline{7 \: \: m\:sec^{-1}}}}}}

 \: \\ \large{\underline{\underline{\rm{\mapsto \: \: \: Thus, \: the \: final \: velocity \: of \: the \: body \: is \: \: \boxed{\bf{7 \;\: m\:sec^{-1}}}}}}}

_______________________________________________

2.) For a body moving with an initial velocity u and uniform acceleration a. Find the displacement of the body in time t.

-----------------------------------------------------------

Answer.) Given,

» Initial velocity of the body = u

» Acceleration of the body = a

» Time taken by the body = t

Here, we can use the Position - Time Relationship to find our answer.

By Second Equation of Motion we know that,

 \: \\ \qquad \large{\sf{:\Longrightarrow \: \: \: s \: = \: \bf{ut \: \: + \: \: \dfrac{1}{2} \: \times \: at^{2}}}}

Hence this is the required answer.

 \: \\ \large{\underline{\underline{\rm{\mapsto \: \: \: Thus, \: the \: displacement \:  \bf{\bf{s}} \: \rm{of \: the \: body \: in \: time \: t \: is} \: \: \boxed{\bf{ut \: + \: \dfrac{1}{2}at^{2}}}}}}}

_______________________________________________

 \: \\ \: \qquad \large{\underbrace{\underbrace{\sf{More \: \: to \: \: know \: \: :-}}}}

 \: \\ \leadsto \: \: \sf{v \: - \: u \: \: = \: \: at}

This is the First Equation of Motion.

It is also know as Velocity Position Relationship.

 \: \\ \leadsto \: \: \sf{Velocity \: = \: \dfrac{Displacement}{Time}}

 \: \\ \leadsto \: \: \sf{Acceleation \: = \: \dfrac{v \: - \: u}{t}}

 \: \\ \leadsto \: \: \sf{Displacement \: = \: Velocity \: \times \: Time}

 \: \\ \leadsto \: \: \sf{s_{n_{(th)}} \: = \: u + \: \dfrac{a}{2}(2n - 1)}


EliteSoul: Nice
TheValkyrie: Awesome!
Answered by EliteSoul
71

Solution for 1 :

Given,

A body moving with an initial velocity of 1 m/s accelerates uniformly at 0.5 m/s2.

To find :

Find out its velocity when it has a displacement of 48 m.

Solution :

Given, u = 1 m/s ; a = 0.5 m/s² ; s = 48 m

Now using 3rd equation of motion :

v² = u² + 2as

⇒ v² = 1² + 2 * 0.5 * 48

⇒ v² = 1 + 48

⇒ v² = 49

⇒ v = √49

v = 7 m/s

∴ Velocity of body at displacement of 48 m = 7 m/s

_______________________________

Solution for 2 :

Given,

Initial velocity = u m/s

Acceleration = a m/s²

Time = t s

To find :

Displacement of body

Solution :

At first, considering that there is no acceleration, so :

Displacement , s = Velocity * time

s = V * t                     _(i)

Now we know, average velocity is the mean of initial and final velocity.

⇒ V = (u + v)/t

Now, from first equation of motion, v = u + at

⇒ V = (u + u + at)/2

⇒ V = (2u + at)/2

⇒ V = 2u/2 + at/2

V = u + 1/2 at               _(ii)

Now putting value of (ii) in (i) :

⇒ s = (u + 1/2 at) * t

s = ut + 1/2 at²

∴ Displacement of body in time t , s= ut + 1/2 at²


TheValkyrie: Awesome!
EliteSoul: Thanks :D
Similar questions