Math, asked by supriyapujahari4, 6 months ago

Hello Brainlians!!
This is the question to check your mathematics. Please help !!!

A grassy park of length 20 m and breadth 15 m is there. There is a circular pond of radius 7 m at the centre of it. Find the cost of cementing the park except the pond, at the rate of Rs. 15 per sq. m. Assume that there is no place left except pond. Give the correct answer.

Answer correctly if you know. Don't be greedy for points. No spam. Spams will be reported. Spam not allowed. Spammers stay away.

Answers

Answered by IdyllicAurora
119

Answer :-

 \: \\ \: \boxed{\boxed{\rm{\mapsto \: \: \: \orange{Firstly \: let's \: understand \: the \: concept \: used \: :-}}}}

Here the concept of Area of Rectangle and Area of Circle has been used. We see that the dimensions of the Rectangular Park has been given. We can find its area and then we can subtract the area of pond from it. The area left can be multiplied with the rate and then find the total cost.

_______________________________________________

Formula Used :-

 \:\: \\\: \large{\boxed{\boxed{\sf{Area \: of \: Rectangle_{(park)} \: = \: \bf{\blue{Length(L) \: \times \: Breadth(B)}}}}}}

 \:\: \\\: \large{\boxed{\boxed{\sf{Area \: of \: Circle_{(pond)} \: = \: \bf{\blue{\pi r^{2}}}}}}}

 \:\: \\ \: \large{\boxed{\boxed{\sf{Area \: to \: be \: Cemented \: = \: \bf{\blue{Area \: of \: Park \: - \: Area \: of \: Pond}}}}}}

 \: \: \\ \: \large{\boxed{\boxed{\sf{Total \: cost \: of \: Cementing \: = \: \bf{\blue{Area \: to \: be \: Cemented \: \times \: Rate_{(in \: per \: m^{2})}}}}}}}

_______________________________________________

Solution :-

Given,

» Length of the Rectangular Plot = 20 m

» Breadth of the Rectangular Plot = 15 m

» Radius of the Circular Pond = 7 m

» Rate of Cementing per m = Rs. 15

_______________________________________________

~ For the Area of Park :-

 \:\: \\ \qquad\: \large{\sf{\rightarrow \: \: \: Area \: of \: Rectangle_{(park)} \: = \: \bf{Length(L) \: \times \: Breadth(B)}}}

 \:\: \\ \qquad\: \large{\sf{\rightarrow \: \: \: Area \: of \: Rectangle_{(park)} \: = \: \bf{20 \: m \: \times \: 15 \: m \: \: = \: \: \underline{\underline{300 \: m^{2}}}}}}

 \: \\ \: \large{\boxed{\boxed{\tt{Area \:\; of \:\; Park \:\; = \; \bf{\red{300 \: m^{2}}}}}}}

_______________________________________________

~ For the Area of Pond :-

 \:\: \\ \qquad \: \large{\sf{\rightarrow \: \: \: Area \: of \: Circle_{(pond)} \: = \: \bf{\pi r^{2}}}}

 \:\: \\ \qquad \: \large{\sf{\rightarrow \: \: \: Area \: of \: Circle_{(pond)} \: = \: \bf{\dfrac{22}{\cancel{7}} \: \times \:  (7)^{\cancel{2}}}}}

 \:\: \\ \qquad \: \large{\sf{\rightarrow \: \: \: Area \: of \: Circle_{(pond)} \: = \: \bf{22 \: \times \:  7 \: \: = \: \: \underline{\underline{154 \: m^{2}}}}}}

 \: \\ \: \large{\boxed{\boxed{\tt{Area \:\; of \:\; Pond \:\; = \; \bf{\red{154 \: m^{2}}}}}}}

_______________________________________________

~ For the Area to be Cemented :-

 \:\: \\ \qquad \: \large{\sf{\longrightarrow \: \: \: Area \: to \: be \: Cemented \: = \: \bf{Area \: of \: Park \: - \: Area \: of \: Pond}}}

 \:\: \\ \qquad \: \large{\sf{\longrightarrow \: \: \: Area \: to \: be \: Cemented \: = \: \bf{300 \: m^{2} \: - \: 154 \: m^{2} \: = \: \: \underline{\underline{146 \: m^{2}}}}}}

 \: \\ \: \large{\boxed{\boxed{\tt{Area \:\; to \:\; be \:\; Cemented \:\; = \; \bf{\red{146 \: m^{2}}}}}}}

_______________________________________________

~ For the Total Cost of Cementing :-

 \: \\ \: \qquad \: \large{\sf{\longmapsto \: \: \: Total \: cost \: of \: Cementing \: = \: \bf{Area \: to \: be \: Cemented \: \times \: Rate_{(in \: per \: m^{2})}}}}

 \: \\ \: \qquad \: \large{\sf{\longmapsto \: \: \: Total \: cost \: of \: Cementing \: = \: \bf{146 \: m^{2} \: \times \: 15 \: per \: m^{2} \: \: = \: \: \underline{\underline{Rs.\: 2190}}}}}

 \: \\ \: \large{\boxed{\boxed{\tt{Total \:\; cost \:\; of \:\; Cementing \:\; = \; \bf{\red{Rs. \: 2190}}}}}}

 \: \: \\ \large{\underline{\underline{\rm{\leadsto \: \: \: Thus, \: total \: cost \: of \: cementing \: the \: park \: is \: \: \boxed{\bf{Rs. \: 2190}}}}}}

_______________________________________________

 \: \\ \: \quad \large{\underline{\mapsto{\sf{\blue{Evaluation \: \:  from \: \: the \: \: Figure}}}}}

From figure we see that, DEFG is the rectangular grassy park. There is a pond in the centre.

DE = length of the park = 20 m

GF = length of the park = 20 m

DG = breadth of the park = 15 m

EF = breadth of the park = 15 m

_______________________________________________

 \: \qquad \large{\underbrace{\underbrace{\sf{\purple{More \: formulas \: to \: know \: :-}}}}}

Area of Square = (Side)²

Area of Triangle = ½ × Base × Height

Perimeter of Square = 4 × Side

Perimeter of Rectangle = 2πr

Perimeter of Triangle = Sum of the sides

-----------------------------------------------------------

Are you an App User ?

If you are an app user, don't worry !

Please swipe left of the screen to see full answer.

Attachments:

Cynefin: Awesome :D
MisterIncredible: SMART
amansharma264: Good
Glorious31: Perfection at peaks ! (◍•ᴗ•◍)
pulakmath007: Very Nice
Answered by Anonymous
88

Solution :

Cost of cementing the park except the pond is ₹2190 .

Step by step explanation :

Let the Area of park and pond be \sf\:A_1\:and\:A_2 and Area of cementing surface be A .

Dimensions of Park

  • Length = 20m
  • Breadth = 15 m

\rm\:A_1=length\:\times\:breadth

Put the given values

\sf\implies\:A_1=20\times15

\sf\implies\:A_1=300m^2

Dimensions of circular Pond

  • Radius of pond , r= 7 cm

\rm\:A_2=\pi\:r^2

\sf\implies\:A_2=\dfrac{22}{7}\times(7)^2

\sf\implies\:A_2=\dfrac{22}{7}\times7\times7

\sf\implies\:A_2=22\times7

\sf\implies\:A_2=154m^2

We have to find the cost of cementing the park except the pond, at the rate of Rs. 15 per sq. m.

Area of cementing

\rm\:A=A_1-A_2

\sf\implies\:A=(300-154)m^2

\sf\implies\:A=146m^2

Rate of cementing = ₹15 m²

Thus,

Cost of cementing =₹15× 146=₹2190


Cynefin: Splendid :D
Anonymous: Thankies :)
MisterIncredible: SMART
amansharma264: Great
Glorious31: Amazingly explained (◍•ᴗ•◍)
Anonymous: Thanks :)
pulakmath007: Brilliant
Similar questions