❤hello brainlics❤ what are phytohormones ? list four types of phytohormones .where these hormones synthesised
siku45:
sorry sister please
Answers
Answered by
1
Plant hormones (also known as phytohormones) are signal molecules produced within plants, that occur in extremely low concentrations. They exert strong control over plant development and can either act locally or in more distant part of the plant. Plant hormones control all aspects of development, from embryogenesis, the regulation of organ size, pathogen defense, stress tolerance and through to reproductive development. Unlike in animals (in which hormone production is restricted to specialized glands) each plant cell is capable of producing hormones.[1][2][3] The term 'phytohormone' was coined by Went and Thimann and used in the title of their book in 1937.[4]
Phytohormones are found across the plant kingdom, and even in algae, where they have similar functions to those seen in higher plants.[5] Some phytohormones also occur in microorganisms, such as unicellular fungi and bacteria, however in these cases they do not play a hormonal role and can better be regarded as secondary metabolites.
There are five general classes of hormones: auxins, cytokinins, gibberellins, ethylene, and abscisic acid.
Auxins
An auxin, indole‐3‐acetic acid (IAA), was the first plant hormone identified. It is manufactured primarily in the shoot tips (in leaf primordia and young leaves), in embryos, and in parts of developing flowers and seeds. Its transport from cell to cell through the parenchyma surrounding the vascular tissues requires the expenditure of ATP energy. IAA moves in one direction only—that is, the movement is polar and, in this case, downward. Such downward movement in shoots is said to be basipetal movement, and in roots it is acropetal.
Auxins alone or in combination with other hormones are responsible for many aspects of plant growth.
Gibberellins
The gibberellins are widespread throughout the plant kingdom, and more than 75 have been isolated, to date. Rather than giving each a specific name, the compounds are numbered—for example, GA1, GA2, and so on. Gibberellic acid three (GA3) is the most widespread and most thoroughly studied. The gibberellins are especially abundant in seeds and young shoots where they control stem elongation by stimulating both cell division and elongation (auxin stimulates only cell elongation). The gibberellins are carried by the xylem and phloem. Numerous effects have been cataloged that involve about 15 or fewer of the gibberellic acids. The greater number with no known effects apparently are precursors to the active ones.
Ethylene
Ethylene is a simple gaseous hydrocarbon produced from an amino acid and appears in most plant tissues in large amounts when they are stressed. It diffuses from its site of origin into the air and affects surrounding plants as well. Large amounts ordinarily are produced by roots, senescing flowers, ripening fruits, and the apical meristem of shoots. Auxin increases ethylene production, as does ethylene itself—small amounts of ethylene initiate copious production of still more. Ethylene stimulates the ripening of fruit and initiates abscission of fruits and leaves. In monoecious plants (those with separate male and female flowers borne on the same plant), gibberellins and ethylene concentrations determine the sex of the flowers: Flower buds exposed to high concentrations of ethylene produce carpellate flowers, while gibberellins induce staminate ones.
Abscisic acid
Abscisic acid (ABA), despite its name, does not initiate abscission, although in the 1960s when it was named botanists thought that it did. It is synthesized in plastids from carotenoids and diffuses in all directions through vascular tissues and parenchyma. Its principal effect is inhibition of cell growth. ABA increases in developing seeds and promotes dormancy. If leaves experience water stress, ABA amounts increase immediately, causing the stomata to close.
i hope its hlp ypu
Phytohormones are found across the plant kingdom, and even in algae, where they have similar functions to those seen in higher plants.[5] Some phytohormones also occur in microorganisms, such as unicellular fungi and bacteria, however in these cases they do not play a hormonal role and can better be regarded as secondary metabolites.
There are five general classes of hormones: auxins, cytokinins, gibberellins, ethylene, and abscisic acid.
Auxins
An auxin, indole‐3‐acetic acid (IAA), was the first plant hormone identified. It is manufactured primarily in the shoot tips (in leaf primordia and young leaves), in embryos, and in parts of developing flowers and seeds. Its transport from cell to cell through the parenchyma surrounding the vascular tissues requires the expenditure of ATP energy. IAA moves in one direction only—that is, the movement is polar and, in this case, downward. Such downward movement in shoots is said to be basipetal movement, and in roots it is acropetal.
Auxins alone or in combination with other hormones are responsible for many aspects of plant growth.
Gibberellins
The gibberellins are widespread throughout the plant kingdom, and more than 75 have been isolated, to date. Rather than giving each a specific name, the compounds are numbered—for example, GA1, GA2, and so on. Gibberellic acid three (GA3) is the most widespread and most thoroughly studied. The gibberellins are especially abundant in seeds and young shoots where they control stem elongation by stimulating both cell division and elongation (auxin stimulates only cell elongation). The gibberellins are carried by the xylem and phloem. Numerous effects have been cataloged that involve about 15 or fewer of the gibberellic acids. The greater number with no known effects apparently are precursors to the active ones.
Ethylene
Ethylene is a simple gaseous hydrocarbon produced from an amino acid and appears in most plant tissues in large amounts when they are stressed. It diffuses from its site of origin into the air and affects surrounding plants as well. Large amounts ordinarily are produced by roots, senescing flowers, ripening fruits, and the apical meristem of shoots. Auxin increases ethylene production, as does ethylene itself—small amounts of ethylene initiate copious production of still more. Ethylene stimulates the ripening of fruit and initiates abscission of fruits and leaves. In monoecious plants (those with separate male and female flowers borne on the same plant), gibberellins and ethylene concentrations determine the sex of the flowers: Flower buds exposed to high concentrations of ethylene produce carpellate flowers, while gibberellins induce staminate ones.
Abscisic acid
Abscisic acid (ABA), despite its name, does not initiate abscission, although in the 1960s when it was named botanists thought that it did. It is synthesized in plastids from carotenoids and diffuses in all directions through vascular tissues and parenchyma. Its principal effect is inhibition of cell growth. ABA increases in developing seeds and promotes dormancy. If leaves experience water stress, ABA amounts increase immediately, causing the stomata to close.
i hope its hlp ypu
Answered by
2
Answer:
Plant hormones (phytohormones) are chemicals produced by plants that regulate their growth, development, reproductive processes, longevity, and even death. These small molecules are derived from secondary metabolism and are responsible for the adaptation of plants to environmental stimuli.
Similar questions