Chemistry, asked by pragyarani2801, 5 hours ago

HELLO BRAINLY USERS,
I am asking again this please give answer of all questions as proper answer in attachment​

Attachments:

Answers

Answered by dakshmourya36
0

Answer:

1.(5a+2)(5a+2)

7a+7a

14a

2.(12x+2)(12x+2)

14x+14x

28x

Answered by Anonymous
1

Explanation:

 \rm(a)(5a +2)(5a +2)

 \green{ \sf Formula :  - }

 \rm(a + b)(a + b) =  {a}^{2} + 2ab +  {b}^{2}

Here,

  \rm a = 5a \:  \: and \:  \: b = 2

 \rm  {(5a)}^{2}  + 2(5a)(2) +  {2}^{2}

 \rm25a + 20a + 4

 \rm (b.)( \frac{3}{2} x -  \frac{2}{3} y)( \frac{3}{2} x -  \frac{2}{3} y)

 \green{ \sf Formula :  - }

 \rm(a  - b)(a  - b) =  {a}^{2}  -  2ab +  {b}^{2}

Here,

 \rm a =  \frac{3}{2} x  \:  \: and \:  \: b = -  \frac{2}{3} y

 \rm  {(\frac{3}{2} x)}^{2}  - 2(\frac{3}{2} x)(  - \frac{2}{3} y) +  {( - \frac{2}{3} y)}^{2}

 \rm  \frac{9}{4 }  {x}^{2}  +  \frac{2 \times 3 \times 2 \times xy}{6}  +  \frac{4}{9}  {y}^{2}

 \rm  \frac{9}{4 }  {x}^{2}  +  \frac{ \cancel{12}xy}{ \cancel6}  +  \frac{4}{9}  {y}^{2}

 \rm  \frac{9}{4 }  {x}^{2}  + 2xy +  \frac{4}{9}  {y}^{2}

 \rm(c.)(12x - 2)(12x + 2)

 \green{ \sf Formula :  - }

 \rm(a  - b)(a   + b) =  {a}^{2}  -    {b}^{2}

Here,

 \rm a =  {12x} \:  \: and \:  \: b = 2

 \rm  {(12x)}^{2}  -  {2}^{2}

  \rm 144x - 4

 \rm4(36x + 1)

 \rm (d.) \: (9a + 2b)(9a - 2b)

 \green{ \sf Formula :  - }

 \rm(a   + b)(a  - b) =  {a}^{2}  -    {b}^{2}

Here,

 \rm a = 9a \:  \: and \:  \:  b = 2b

 \rm  ({9a)^{2}  -  {(2b)} }^{2}

 \rm 81 {a}^{2}  - 4 {b}^{2}

 \rm(e.) \: ( \frac{3}{5} a - 4)( \frac{3}{5} a - 4)

 \green{ \sf Formula :  - }

 \rm(a  - b)(a  - b) =  {a}^{2}  -  2ab +  {b}^{2}

 \rm\: a = \frac{3}{5} a \:  \: and \:  \: b =  - 4

 \rm  {(\frac{3}{5} a)}^{2}  - 2(\frac{3}{5} a)(4) +  {4}^{2}

 \rm  {\frac{9}{25} a}^{2}  - \frac{2 \times 3 \times 4 \times a}{5} +  16

 \rm  {\frac{9}{25} a}^{2}  - \frac{2 4 a}{5} +  16

 \rm(f.) \: ( \frac{4p}{3}  +  \frac{q}{5} )( \frac{4p}{3}  +  \frac{q}{5} )

 \green{ \sf Formula :  - }

 \rm(a + b)(a + b) =  {a}^{2} + 2ab +  {b}^{2}

Here,

 \rm \: a =  \frac{4p}{3}  \:  \: and \:  \: b =   \frac{q}{5}

\rm { \frac{16p}{9} }^{2}  + {\frac{2 \times 4p \times q}{3 \times 5}}+  {\frac{q}{25} }^{2} </p><p>

\rm { \frac{16p}{9} }^{2}  + {\frac{8pq}{15}}+  {\frac{q}{25} }^{2} </p><p>

 \rm (g.) \: (a - 16)(a + 2)

 \rm  \: a(a - 16) + 2(a - 16)

 \rm  {a}^{2}  - 16a + 2a - 32

 \rm  {a}^{2}  - 14a - 32

 \rm (h.)(11x - 7)(11x + 7)

\green{ \sf Formula :  - }

 \rm(a  - b)(a   + b) =  {a}^{2}  -    {b}^{2}

 \rm a = 11x \:  \: and \:  \: b = 7

 \rm  ({11x)}^{2}  -  {7}^{2}

 \rm121 {x}^{2} - 49

I hope it is helpful

Similar questions