HELLO BRAINLY USERS !!
Let f(x) = x - [x], (where [x] denotes the greatest integer ≤ x) and
then g(x) is equal to?
Options:
A) 0
B) 1
C) -1
D) None of these
→ Spam answers will be deleted.
Don't be greedy for points ⚠️ ⚠️
→ Quality answers needed.
Answers
Appropriate Question :-
Let f(x) = x - [x], (where [x] denotes the greatest integer ≤ x) and
then g(x) is equal to?
Options:
A) 0
B) 1
C) -1
D) None of these
Given that,
f(x) = x - [x], (where [x] denotes the greatest integer ≤ x)
We know,
where,
We know,
So,
Now, Consider
Hence, Option (c) is correct
Additional Information :-
Correct Question :-
Let f(x) = x - [x], where [x] denotes the greatest integer ≤ x.
To Find :-
Value of g(x).
Solution :-
f(x) = x - [x] = {x}, where {.} represents fractional part function.
Range of fractional part function : [0, 1)
Hence, value of f(x) will be 0 else it will lie between 0 and 1.
Now,
So,
Solving g(x),
Applying limits,
Answer :-
Value of g(x) = -1. Hence, option C is correct option.
Extra Note :
Whenever infinity is in power of any proper fraction (numerator < denominator) then it equals to 0.
For example,