Math, asked by Aryan0123, 3 days ago

HELLO BRAINLY USERS !!

Let f(x) = x - [x], (where [x] denotes the greatest integer ≤ x) and
\sf{g(x) =  \lim _{x \to 0} \:  \dfrac{ \{f(x) \}^{2n } - 1 }{ \{f(x) \}^{2n} + 1 } } \\  \\
then g(x) is equal to?

Options:
A) 0
B) 1
C) -1
D) None of these

 \\
→ Spam answers will be deleted.
Don't be greedy for points ⚠️ ⚠️

→ Quality answers needed.​

Answers

Answered by mathdude500
107

Appropriate Question :-

Let f(x) = x - [x], (where [x] denotes the greatest integer ≤ x) and

\sf{g(x) = \lim _{n \to  \infty } \: \dfrac{ \{f(x) \}^{2n } - 1 }{ \{f(x) \}^{2n} + 1 } }

then g(x) is equal to?

Options:

A) 0

B) 1

C) -1

D) None of these

\large\underline{\sf{Solution-}}

Given that,

f(x) = x - [x], (where [x] denotes the greatest integer ≤ x)

We know,

\rm :\longmapsto\:x - [x] \:  =  \:  \{x \}

where,

\rm :\longmapsto\:\{x \} \in \: [0,1)

We know,

\rm :\longmapsto\:x \in \: [0,1) \: then \:  {x}^{n}  = 0 \: as \: n \:  \to \:  \infty

\bf\implies \:\: \:  \{ {x} \}^{2n}  = 0 \: as \: n \:  \to \:  \infty

So,

Now, Consider

\rm :\longmapsto\:\sf{g(x) = \lim _{n \to  \infty } \: \dfrac{ \{f(x) \}^{2n } - 1 }{ \{f(x) \}^{2n} + 1 } }

\rm :\longmapsto\:\sf{g(x) = \lim _{n \to  \infty } \: \dfrac{ \{x\}^{2n } - 1 }{ \{x \}^{2n} + 1 } }

\rm :\longmapsto\:\sf{g(x) = \: \dfrac{ 0 - 1 }{ 0 + 1 } }

\rm :\longmapsto\:\sf{g(x) = \: \dfrac{  - 1 }{   1 } }

\bf\implies \:\:\bf{g(x) = -  \: 1}

Hence, Option (c) is correct

Additional Information :-

\boxed{ \bf{ \:  \lim _{x \to 0} \: \frac{sinx}{x}  = 1}}

\boxed{ \bf{ \:  \lim _{x \to 0} \: \frac{tanx}{x}  = 1}}

\boxed{ \bf{ \:  \lim _{x \to 0} \: \frac{tan {}^{ - 1} x}{x}  = 1}}

\boxed{ \bf{ \:  \lim _{x \to 0} \: \frac{sin {}^{ - 1} x}{x}  = 1}}

\boxed{ \bf{ \:  \lim _{x \to 0} \: \frac{log(1  + x)}{x}  = 1}}

\boxed{ \bf{ \:  \lim _{x \to 0} \: \frac{ {e}^{x} - 1 }{x}  = 1}}

Answered by assingh
106

Correct Question :-

Let f(x) = x - [x], where [x] denotes the greatest integer ≤ x.

\sf{g(x)=\displaystyle \lim_{n\to \infty}\dfrac{\{f(x)\}^{2n}-1}{\{f(x)\}^{2n}+1}}

To Find :-

Value of g(x).

Solution :-

f(x) = x - [x] = {x}, where {.} represents fractional part function.

Range of fractional part function : [0, 1)

Hence, value of f(x) will be 0 else it will lie between 0 and 1.

Now,

\sf{If\:n\to\infty\:then\:2n\to \infty}

So,

\sf{\{f(x)\}^{2n}=0}

\sf{(\because f(x)\in[0,1))}

Solving g(x),

\sf{g(x)=\displaystyle \lim_{n\to \infty}\dfrac{\{f(x)\}^{2n}-1}{\{f(x)\}^{2n}+1}}

Applying limits,

\sf{g(x)=\dfrac{\{f(x)\}^{\infty}-1}{\{f(x)\}^{\infty}+1}}

\sf{g(x)=\dfrac{0-1}{0+1}}

\sf{g(x)=\dfrac{-1}{1}}

\boxed{\sf{g(x)=-1}}

Answer :-

Value of g(x) = -1. Hence, option C is correct option.

Extra Note :

Whenever infinity is in power of any proper fraction (numerator < denominator) then it equals to 0.

For example,

\sf{\left(\dfrac{1}{2}\right)^{\infty}=\dfrac{1}{2^\infty}=\dfrac{1}{\infty}=0}

\sf{\left(\dfrac{3}{5}\right)^{\infty}=\dfrac{1}{(1.67)^\infty}=\dfrac{1}{\infty}=0}


Asterinn: Great!
Similar questions