Math, asked by Anonymous, 11 months ago

hello buddies can u help me out.......​

Attachments:

Answers

Answered by rk4846336
0

Step-by-step explanation:

Solution is given in above pic ...

Mark it Brainliest answer

Attachments:
Answered by Anonymous
4

Answer:

\huge\underline\bold\red{Answer!!}

we \: know \: that

curved surface area of frustum=

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \pi(r1 + r2)l

here \: l = 4cm

we \: need \: to \: find \: r1 \: and \: r2

FOR r1 :-

circumference \: of \: 1st  \:  end=  \: 18cm

2\pi \: r1 = 18

r1 =  \frac{18}{  2}  \times  \frac{1}{\pi}

r1 =  \frac{9}{\pi}

FOR r2 :-

circumference \: of \: 2nd \: end = 6cm

2\pi \: r2  = 6

r2 =  \frac{6}{2} \times  \frac{1}{\pi}

r2 =  \frac{3}{\pi}

Now,

Curved surface area of frustum =

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \ \:  \:  \:  \:  \:  \:  \pi(r1 + r2)l

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = \pi( \frac{9}{\pi}  +  \frac{3}{\pi}  ) \times 4

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \pi( \frac{9 + 3}{\pi} ) \times 4

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \pi \times  \frac{12}{\pi}  \times 4

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 48cm {}^{2}

Hence, curved surface area of frustum = 48cm²

Hope it helps you..............❤️❤️

Attachments:
Similar questions