Math, asked by arsh636, 1 year ago

hello can anyone help me wid this problem in integration ​

Attachments:

Answers

Answered by Swarup1998
18

Solution :

Let, \sqrt{1+e^{x}}=z

Taking differentials, we get

\frac{1}{2}\frac{e^{x}dx}{\sqrt{1+e^{x}}}=dz

\to \frac{e^{x}dx}{\sqrt{1+e^{x}}}=2dz

Also, \sqrt{1+e^{x}}=z

Squaring both sides, we get

1+e^{x}=z^{2}

\to e^{x}=z^{2}-1

\to x=log(z^{2}-1)

Now, \int \frac{x\:e^{x}}{\sqrt{1+e^{x}}}dx

=2\int log(z^{2}-1)dz

=2log(z^{2}-1)\int dz-2\int [\frac{d}{dz}\{log(z^{2}-1)\}\times \int dz]dz

=2zlog(z^{2}-1)-2\int \frac{2z^{2}dz}{z^{2}-1}

=2zlog(z^{2}-1)-4\int \frac{(z^{2}-1)+1}{z^{2}-1}dz

=2zlog(z^{2}-1)-4\int dz -4\int \frac{dz}{z^{2}-1}+C

=2zlog(z^{2}-1)-4z-\frac{4}{2}log(\frac{z-1}{z+1})+C

where C is integral constant

=2x\sqrt{1+e^{x}}-4\sqrt{1+e^{x}}-2log\frac{\sqrt{1+e^{x}}-1}{\sqrt{1+e^{x}}+1}+C

=2(x-2)\sqrt{1+e^{x}}-2log\frac{\sqrt{1+e^{x}}-1}{\sqrt{1+e^{x}}+1}+C

Comparing with the given integral solution, we get

f(x) = 2(x - 2) >> option (d) is correct

g(x) = \frac{\sqrt{1+e^{x}}-1}{\sqrt{1+e^{x}}+1} >> option (b) is correct


aaravshrivastwa: Awesome Answer
Similar questions