Math, asked by KongantiChayaSri, 8 months ago

hello ,can u plz solve this for me​

Attachments:

Answers

Answered by aryanchandra2008
1

Agar aapko lagta hai ki mera answer is worthy of being selected as the Brainliest then please GO aHEAD and

@BRAINLIEST

Attachments:
Answered by aryans01
1

since \:  {(a + b)}^{2}  =  {a}^{2}  +  {b }^{2}  + 2ab \\  =  >  {a}^{2}  +  {b}^{2}  =  {(a + b)}^{2}  - 2ab \\

Therefore,

 {x}^{2} +  \frac{1}{ {x}^{2} }   = ( \frac{ \sqrt{5} + 3 }{2}  +  \frac{2}{ \sqrt{5}  + 3} ) ^{2}  - 2 \times  \frac{ \sqrt{5} + 3 }{2}  \times  \frac{2}{ \sqrt{5} + 3 }  \\  =  \frac{  {( \sqrt{5 }  + 3)}^{2} + 4 }{2( \sqrt{5} + 3) }  - 2

 =  \frac{5 + 9 + 6 \sqrt{5} + 4 }{2 \sqrt{5} + 6 }   - 2 \\  \frac{18 +  6\sqrt{5}  - 4 \sqrt{5}  - 12}{2 \sqrt{5}  +6}   \\  =  \frac{6 + 2 \sqrt{5} }{6 + 2 \sqrt{5} }  \\   {x}^{2}  +  \frac{1}{ {x}^{2} }  = 1

Please follow me for more doubts and mark the answer as brainliest.

Thanks.

Similar questions