Math, asked by mixcomedy9311, 4 months ago

hello dear friends
solve it Now.
Q . 18/19/20/21
it is very urgent​

Attachments:

Answers

Answered by mathdude500
1

\bf \:\large \red{AηsωeR : 18} ✍

\tt \:  f(x) = \dfrac{ {x}^{2}  - x}{x + 3}

\tt \:  ⟼f(1) = \dfrac{1 - 1}{1 + 3}  = 0

\tt \:  ⟼ \: f(2) = \dfrac{4 - 2}{2 + 3}  = \dfrac{2}{5}

\tt \:  ⟼ \: f( - 2) = \dfrac{4 + 2}{ - 2 + 3} = 6

\tt \:  ⟼ \: f(0) = \dfrac{0 - 0}{0 + 3}  = 0

\tt \:  ⟼ \: Consider \: \dfrac{f(1) + f(2)}{f( - 2) + f(0)}

\tt \:   =  \: \dfrac{0 +  \dfrac{2}{5} }{6 + 0}

\tt \:   =  \:  \dfrac{2}{30}

\tt \:   = \dfrac{1}{15}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:\large \red{AηsωeR : 19} ✍

\tt \:  ⟼ \: f(x) =  {x}^{2}  {(x - 1)}^{2}

\tt \:  Hence, f(x + 1) =  {(x + 1)}^{2}  {(x + 1 - 1)}^{2}

\tt \:  ⟼ \: f(x + 1) =  {(x + 1)}^{2}  {x}^{2}

\tt \:  Consider \: f(x + 1) \:  -  \: f(x)

\tt \:   =  {(x + 1)}^{2}  {x}^{2}  -  {x}^{2}  {(x - 1)}^{2}

\tt \:   =  {x}^{2}  \bigg( {(x + 1)}^{2}  -  {(x - 1)}^{2}  \bigg)

\tt \:   =  {x}^{2} (4x)

\tt \:   = 4 {x}^{3}

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:\large \red{AηsωeR : 20} ✍

\tt \:  ⟼f(n) = \dfrac{ {n}^{2} {(n + 1)}^{2}  }{4}

\tt \:  Hence, f(n - 1) = \dfrac{ {(n - 1)}^{2}  {n}^{2} }{4}

\tt \:  ⟼ \: Consider \: f(n) - f(n - 1)

\tt \:   = \dfrac{ {n}^{2} {(n + 1)}^{2}  }{4}  - \dfrac{ {(n - 1) }^{2} {n}^{2}  }{4}

\tt \:   = \dfrac{ {n}^{2} }{4} \bigg( {(n + 1)}^{2}   -  {(n - 1)}^{2} \bigg)

\tt \:   = \dfrac{ {n}^{2} }{4}  \times 4n

\tt \:   =  {n}^{3}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:\large \red{AηsωeR : 21} ✍

\tt \:  ⟼f(x) = 5 {x}^{2}  + 7x + 2

\bf\implies \: {5x}^{2}  + 7x + 2 = 110

\tt \:  ⟼ {5x}^{2}  + 7x - 108 = 0

\tt \:  ⟼ {5x}^{2}  + 27x - 20x - 108 = 0

\tt \:  ⟼x(5x + 27) - 4(5x + 27) = 0

\tt \:  ⟼(5x + 27)(x - 4) = 0

\bf\implies \:x =  - \dfrac{27}{5}  \: or \: x \:  = 4

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions
Math, 4 months ago