Hello dears
© Show that :
1 - cos2∅ + sin2Ø / 1 + cos2∅ + sin2∅ = tan∅
© show that :
sinAcosA + sinBcosB/ sin²A - sin²B = cos ( A - B )
© show that :
1 + sin2A / cosA = cosA + sinA/ cosA + sinA = tanA ( 45° - A )
points : 50
thanks
expected answers from special users..
HappiestWriter012:
3 Rd one has errors
Answers
Answered by
5
L.H.S
1- (1-2sin²∅)+2sin∅cos∅/ 1 + (2cos²∅-1) + 2sin∅cos∅
=2sin²∅+2sin∅cos∅/2cos²∅+ 2sin∅cos∅
=2sin∅(sin∅+cos∅)/2cos∅(cos∅+sin∅)
=sin∅/cos∅
=tan∅
=RHS
2) sinAcosA + sinBcosB/ sin²A - sin²B = Cot( A - B )
sinAcosA+sinBcosB/ sin²A-sin²B *2/2
= sin2A+sin2B/2 sin²A-sin²B
=2sin(2A+2B/2)cos(2A-2B/2) / 2sin(A+B)sin(A-B)
=2sin(A+B)cos(A-B)/ 2sin(A+B)sin(A-B)
=cos(A-B)/sin(A-B)
=cot (A-B)
1- (1-2sin²∅)+2sin∅cos∅/ 1 + (2cos²∅-1) + 2sin∅cos∅
=2sin²∅+2sin∅cos∅/2cos²∅+ 2sin∅cos∅
=2sin∅(sin∅+cos∅)/2cos∅(cos∅+sin∅)
=sin∅/cos∅
=tan∅
=RHS
2) sinAcosA + sinBcosB/ sin²A - sin²B = Cot( A - B )
sinAcosA+sinBcosB/ sin²A-sin²B *2/2
= sin2A+sin2B/2 sin²A-sin²B
=2sin(2A+2B/2)cos(2A-2B/2) / 2sin(A+B)sin(A-B)
=2sin(A+B)cos(A-B)/ 2sin(A+B)sin(A-B)
=cos(A-B)/sin(A-B)
=cot (A-B)
Answered by
0
• See the attached file ⤴️
Attachments:
Similar questions