Math, asked by choudhryhello, 6 hours ago

hello everybody ,
solve this question :
\large\tt{if\:\frac{a+b}{xa+yb}=\frac{b+c}{xb+yc} =\frac{c+a}{xc+ya} \:where, x+y\neq 0, \: and\: a+b+c\neq 0}
then find the vlaue of each of the ratios

moderators
brainly stars
atlas 99, taken name, your helper adi

Answers

Answered by YourHelperAdi
8

To Find :

the value of each of the ratios given

Solution :

let, each ratio be equal to 'k', so :

\tt{\frac{a+b}{xa+yb} =\frac{b+c}{xb+yc} = \frac{c+a}{xc+ya} = k }

\implies \tt{\frac{a+b}{xa+yb} = k

\tt{\implies a+b = kxa+kyb ---eq1}

\implies \tt{\frac{b+c}{xb+yc} = k}

\implies \tt{b+c = kxb+kyc----eq2}

\tt{\implies \frac{c+a}{xc+ya} = k }

\tt{\implies c+a = kxc+kya-----eq3}

now, adding the (eq1), (eq2) and (eq3), we get :

\tt{\implies eq1+eq2+eq3}

\tt{\implies (a+b) +(b+c)+(c+a)=(kxa+kyb)+(kxb+kyc)+(kxc+kya)}

\tt{\implies 2a+2b+2c = k(xa+yb+xb+yc+xc+ya)}

\tt{\implies 2(a+b+c) = k[x(a+b+c)+y(a+b+c)]}

\tt{\implies 2(a+b+c) = k(x+y)(a+b+c)}

\large\tt{\implies k = \frac{2(a+b+c)}{(x+y)(a+b+c)}}

\tt{\implies k = \frac{2}{x+y}}

hence, value of each ratio = k

or, value of each ratio =2/x+y

thanks for believing in me :]

Answered by Anonymous
17

To Find :-

  • The value of each ratio

Solution :-

Let each ratio be "r". Therefore :-

⠀⠀

 \boxed{ \frac{a + b}{xa + yb}  =  \frac{b + c}{xb + yc}  =  \frac{c + a}{xc + ya}  = r}

   : \implies \:  \frac{a + b}{xa + yb}  = r  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  : \implies \: a + b = r(xa + yb) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  : \implies \: a + b = rxa + ryb... (eq. 1)

   : \implies \:  \frac{b + c}{xb + yc}  = r \:   \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  : \implies \: b + c= r(xb + yc) \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \\  : \implies \: b + c = rxb + ryc..( eq. 2)

 : \implies \:  \frac{c + a}{xc + ya}  = r  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  : \implies \: c + a= r(xc + ya) \:   \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \: \\  : \implies \: c + a = rxc + rya \:.. ( eq. 3)

Now, on adding these equations, we get,

\sf: \implies \: (a + b) + (b + c) + (c + a) = (rxa + ryb) + (rxb + ryc) + (rxc + rya) \\\sf : \implies \:2a + 2b + 2c = r[(xa + yb) + (xb + yc) + (xc + ya)]  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf :  \implies \: 2(a + b + c) = r (x + y) ( a + b + c )  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\\sf:  \implies \:  r =  \frac{2 \cancel{(a + b + c)}}{(x + y) \cancel{(a + b + c)}}  =  \frac{2}{x + y}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \color{yellow} \bigstar \:  \:   \color{orange}{\boxed{r =  \frac{2}{x + y}}}

Therefore, each ratio or "r" is  \frac{2}{x + y}  .

I hope that helps! :)

Similar questions