Math, asked by MakeItdifferent, 11 months ago

Hello everyone ☺☺ 50 points.
IIT Based Question.

Suppose n be an integer greater than 1 . Let  a_n  =  \frac{1}{ log_{n}(2002) } . Suppose b = a2 + a3 + a4 + a5 and c = a10 + a11 + a12 + a13 + a14. Then find the value of ( b - c ) .

Please solve this .

Answers

Answered by Anonymous
195

Answer :

→ -1.

step-by-step explanation :

Solution :-

See the attachment.

 \huge \orange{ \boxed{ \sf \therefore b - c =  \boxed{ - 1}.}}

Hence, it is solved.

Attachments:

Anonymous: NYC..,❤⭐
Anonymous: NYC..,❤⭐
LunaticBoy: hii
LunaticBoy: aditya
LunaticBoy: arun
LunaticBoy: vicky
LunaticBoy: sathis
LunaticBoy: arjun
tanishq6321: hi
tanishq6321: back 2 u
Answered by anindyaadhikari13
2

\star\:\:\:\bf\large\underline\blue{Question:-}

  • Solve the given IIT based Question.

\star\:\:\:\bf\large\underline\blue{Solution:-}

Given that,

a_{n} =  \frac{1}{ log_{n}(2002) }

Now,

b =  a_{2} +  a_{3} + ...+a_{5}

c =  a_{10} +  a_{11} + ....+a _{14}

We have to find the value of b-c

Here,

a_{n} =  \frac{1}{ log_{n}(2002) }  =  log_{2002}(n)

So,

b =  log_{2002}(2)  +  log_{2002}(3)  + ..+ log_{2002}(5)

 =  log_{2002}(2 \times 3 \times 4 \times 5)

And,

c =  log_{2002}(10)  +  log_{2002}(11)  + .... +log_{2002}(14)

 =  log_{2002}(10 \times 11 \times ...15)

So,

b - c =  log_{2002}(2 \times 3 \times 4 \times 5)  -  log_{ 2002 }(10 \times 11 \times 12 \times 13 \times 14)

 =  log_{2002}( \frac{2 \times 3 \times 4 \times 5}{10 \times 11 \times 12 \times 14} )

 =  log_{2002}( \frac{1}{11 \times 13 \times 14} )

 =  log_{2002}( \frac{1}{2002} )

 =  log_{2002}( {2002}^{ - 1} )

 =  - 1  \: \cancel{ log_{2002}(2002) }

 =  - 1

\star\:\:\:\bf\large\underline\blue{Answer:-}

  • b - c =- 1

\star\:\:\:\bf\large\underline\blue{Formulae\:Used:-}

  •  log_{a}(b)  =  \frac{1}{ log_{b}(a) }
  •  log(x)  -  log(y)  =  log(xy)
  •  log(x)  +  log(y)  =  log(xy)
  •   log_{x}( {y}^{n} )  = n \:   log_{x}(y)
  •  log_{x}(x)  = 1 \: for \: x \neq1
Similar questions