Math, asked by ItsMarshmello, 9 months ago

Hello everyone!


Find the value of x in the above equation.

No spam​

Attachments:

Answers

Answered by 217him217
1

Step-by-step explanation:

(x+b/2a)² + c/a - (b/2a)² = 0

x² + bx/a + (b/2a)² + c/a - (b/2a)²=0

x² + bx/a + c/a = 0

=> x =[ -(b/a) + √((b²/a² - 4c/a)]/2

=> x = [(-b/a) + √(b²-4ac)/a²)]/2

=> x = [ -b + √(b²-4ac) ]/2a

2nd x = [-b - √(b²-4ac)]/2a

Answered by ғɪɴɴвαłσℜ
2

Aɴꜱᴡᴇʀ

  \large \orange{\sf{}x =  \sqrt{ -  \frac{bx + c}{a} } }

_________________

Gɪᴠᴇɴ

 \large \tt{} (x +  \frac{b}{2a}  {)}^{2}  +  \frac{c}{a} - ( \frac{b}{2a}   {)}^{2} = 0

_________________

ᴛᴏ ꜰɪɴᴅ

The value of X?

_________________

Sᴛᴇᴘꜱ

 \large \tt{} (x +  \frac{b}{2a}  {)}^{2}  +  \frac{c}{a} - ( \frac{b}{2a}   {)}^{2} = 0  \\  \\  \tt{} \: with \: the \:  help   \: of \:  \red{ ( {x +  {y)}^{2} } =  {x}^{2}  + 2xy +  {y}^{2} } \\  \\   \leadsto\tt{} {x}^{2}  +  \frac{ bx}{a}  +{ \cancel  { \frac{b}{ {4a}^{2} } }^{2}  }+  \frac{c}{a}  - { \cancel{ \frac{ {b}^{2} }{ {4a}^{2} } }} = 0 \\  \\   \leadsto\tt{} {x}^{2}  +  \frac{bx + c}{a}  = 0 \\  \\   \leadsto\tt{} {x}^{2}  =   - \frac{bx + c}{a}  \\  \\   \pink {\tt\dashrightarrow{}x =  \sqrt{ -  \frac{bx + c}{a} } }

_________________

\huge{\mathfrak{\purple{hope\; it \;helps}}}

Similar questions