Math, asked by imrani1, 1 year ago

hello everyone!!☺☺☺

if sin theta = 8 by 9
find sin theta + cos theta ???

Answers

Answered by chopraneetu
8

 \sin \theta =  \frac{8}{9}  =  \frac{p}{h} \\ b =  \sqrt{ {9}^{2} -  {8}^{2} }  =  \sqrt{81 - 64} =  \sqrt{17} \\  \cos\theta =  \frac{b}{h}   =  \frac{ \sqrt{17} }{9}  \\  \sin\theta +  \cos\theta =  \frac{8}{9} +  \frac{ \sqrt{17} }{9}  \\ =  \frac{8 +  \sqrt{17} }{9}
Answered by ak6058608
0

sin theta =8/9 , =p/h

therefore p=8 & h=9

using Pythagoras theorem b=√h² - p²

=√81 - 72

= √9

=3

now,

cos theta = b/h

=3/9

ATQ

sin theta + cos theta

=8/9 + 3/9

=11/9

Similar questions