Math, asked by Ddv08, 1 year ago

Hello everyone....



Please solve it
☺️

Attachments:

Answers

Answered by MOSFET01
5
\bold{\underline{Hey\: mates !}}



[\sqrt{3}+\sqrt{2}]^{6} - [\sqrt{3}-\sqrt{2}]^{6}



Now ,



 a = [\sqrt{3}+\sqrt{2}]


 b = [\sqrt{3}-\sqrt{2}]



We have ,



 x^{3}-y^{3} = (x-y)(x^{2} + xy + y^{2})



\therefore\: a^{6} - b^{6} \\\\\implies (a^{2})^{3} - (a^{2})^{3} \\\\\implies [a^2 - b^2][ a^{2} +a^{2}b^{2} + b^{2}]



Now put the value of a & b



\implies[(\sqrt{3}+\sqrt{2})^{2} -(\sqrt{3}+\sqrt{2})^{2}][((\sqrt{3}+\sqrt{2})^{2})^{2}+(\sqrt{3}+\sqrt{2})^{2}(\sqrt{3}-\sqrt{2})^{2}+((\sqrt{3}-\sqrt{2})^{2})^{2}]



\implies [ 3 + 2 + 2\sqrt{6} - 3 - 2 + 2\sqrt{6}][(3+2+2\sqrt{6})^{2} +(3+2-2\sqrt{6})^{2} (3+2-2\sqrt{6})^{2} + (3+2-2\sqrt{6})^{2} ]



\implies [ 4\sqrt{6} ][ (5+2\sqrt{6})^{2} + (5+2\sqrt{6})(5-2\sqrt{6})+(5-2\sqrt{6})^{2}



\implies [ 4\sqrt{6} ][ 25 + 24 + \cancel{20\sqrt{6}} + ( 5^{2} - (2\sqrt{6})^{2} ) + 25 +24 - \cancel{20\sqrt{6}}]



\implies [4\sqrt{6} ][ 98 + ( 25 -24)]



\implies [4\sqrt{6} ][ 98 + 1 ]



\implies [4\sqrt{6} ][ 99]


\implies [396\sqrt{6}]


\bold{\underline{Answer}}


\boxed{[\sqrt{3}+\sqrt{2}]^{6} - [\sqrt{3}-\sqrt{2}]^{6} = 396\sqrt{6}}



<marquee = right> Thanks

astha1917: awesome letex ... :o
MOSFET01: need edit
MOSFET01: Welcome
Answered by pushpajaiswal1089
0

Answer:

hfutdcudutcdixytixdtuxdxtyditdy

Similar questions