Math, asked by YourHelperAdi, 9 days ago

Hello everyone, please solve this question.
Prove that !
  \displaystyle\rm 2log \frac{35}{192}  + 2log \frac{114}{91}  + 2log \frac{13}{19}  + log48 = log \frac{75}{64}

Thanks ! ​

Answers

Answered by anindyaadhikari13
15

\textsf{\large{\underline{Solution}:}}

We have to prove that:

 \rm \longrightarrow 2 \log \dfrac{35}{192} + 2 \log \dfrac{114}{91} + 2 \log \dfrac{13}{19} +  \log48 = \log \dfrac{75}{64}

Taking LHS, we get:

 \rm = 2 \log \dfrac{35}{192} + 2 \log \dfrac{114}{91} + 2 \log \dfrac{13}{19} +  \log48

 \rm = 2 \bigg[ \log \dfrac{35}{192} + \log \dfrac{114}{91} +\log \dfrac{13}{19} \bigg] +  \log48

We know that:

 \rm \longmapsto \log(x)+ \log(y) +\log(z) +  \cdot \cdot \cdot =  \log(xyz\cdot \cdot \cdot )

Therefore, we have:

 \rm = 2 \log \bigg( \dfrac{35}{192} \times \dfrac{114}{91} \times  \dfrac{13}{19} \bigg) +  \log48

 \rm = 2 \log \bigg( \dfrac{35}{192} \times \dfrac{114}{7} \times  \dfrac{1}{19} \bigg) +  \log48

 \rm = 2 \log \bigg( \dfrac{5}{192} \times \dfrac{114}{1} \times  \dfrac{1}{19} \bigg) +  \log48

 \rm = 2 \log \bigg( \dfrac{5}{192} \times 6\bigg) +  \log48

 \rm = 2 \log \bigg( \dfrac{5}{32} \bigg) +  \log48

 \rm =  \log \bigg( \dfrac{5}{32} \bigg)^{2}  +  \log48

 \rm =  \log \bigg( \dfrac{5 \times 5}{32 \times 32} \bigg)  +  \log48

 \rm =  \log \bigg( \dfrac{5 \times 5}{32 \times 32} \times 48 \bigg)

 \rm =  \log \bigg( \dfrac{5 \times 5}{32 \times 2} \times3\bigg)

 \rm =  \log \bigg( \dfrac{25}{64} \times3\bigg)

 \rm =  \log \bigg( \dfrac{75}{64} \bigg)

 \rm =  RHS

Hence Proved..!!

\textsf{\large{\underline{Learn More}:}}

 \rm 1. \:  \:  {a}^{n} = b \implies log_{a}(b)  = n

 \rm 2. \:  \: log_{a}(1)  = 0, \: a \neq0,1

 \rm 3. \:  \: log_{a}(a)  = 1, \: a \neq0,1

 \rm 4. \:  \: log_{a}(x)  = log_{a}(y) \implies x = y

 \rm 5. \:  \: log_{e}(x) =  ln(x)

 \rm6. \:  \:  log_{a}(x) + log_{a}(y) = log_{a}(xy)

 \rm7. \:  \:  log_{a}(x) - log_{a}(y) = log_{a} \bigg( \dfrac{x}{y} \bigg)

 \rm 8. \:  \: log_{a}( {x}^{n} ) =  n\log_{a}(x)

 \rm 9. \:  \:  log_{a}(m) =  \dfrac{ log_{b}(m) }{ log_{b}(a) },m > 0,b > 0,a \ne1,b \ne1

 \rm 10. \:  \: log_{a}(b) = \dfrac{1}{ log_{b}(a) }


anindyaadhikari13: Thanks for the brainliest (^_^♪)
Similar questions