HELLO FRIENDS ♥️♥️♥️♥️♥️
Answers
Given Equation is 7sin²x + 3cos²x = 4.
⇒ (4 + 3)sin²x + 3cos²x = 4
⇒ 4sin²x + 3sin²x + 3cos²x = 4
⇒ 4sin²x + 3(sin²x + cos²x) = 4
⇒ 4sin²x + 3 = 4
⇒ 4sin²x = 1
⇒ sin²x = (1/4)
⇒ sinx = 1/2.
We know that cosecθ = (1/sinθ)
Hence, cosecx = (1/1/2)
= 2.
Now,
We know that cos²x = (1 - sin²x)
⇒ cos²x = 1 - (1/2)^2
= 1 - 1/4
= 3/4
Then, cosx = √3/2
We know that secx = (1/cosx)
= (2/√3).
Therefore, the value of secx + cosecx = 2 + (2/√3) ------ Option (A).
Hope it helps!
Answer:
Step-by-step explanation:
Given Equation is 7sin²x + 3cos²x = 4.
⇒ (4 + 3)sin²x + 3cos²x = 4
⇒ 4sin²x + 3sin²x + 3cos²x = 4
⇒ 4sin²x + 3(sin²x + cos²x) = 4
⇒ 4sin²x + 3 = 4
⇒ 4sin²x = 1
⇒ sin²x = (1/4)
⇒ sinx = 1/2.
We know that cosecθ = (1/sinθ)
Hence, cosecx = (1/1/2)
= 2.
Now,
We know that cos²x = (1 - sin²x)
⇒ cos²x = 1 - (1/2)^2
= 1 - 1/4
= 3/4
Then, cosx = √3/2
We know that secx = (1/cosx)
= (2/√3).
Therefore, the value of secx + cosecx = 2 + (2/√3) ------ Option (A).
Read more on Brainly.in - https://brainly.in/question/6765702#readmore