Math, asked by IITGENIUS1234, 1 year ago

♥ Hello Friends !!! ♥


Answer this question ⤵⤵


\mathsf{sin({\dfrac{\pi}{2}} +  \: \theta). \cot( \pi - \theta). \cot({ \dfrac{3\pi}{2}}+ { \theta})} =


❎ No Spam Answers ❎


First and best = Brainliest

Answers

Answered by Anonymous
9

sin(\frac{\pi}{2}+\theta)\times cot(\pi-\theta)\times cot(\frac{3 \pi}{2}+\theta)

\implies sin(90+\theta)\times cot(180-\theta) \times cot(270+\theta)

\implies cos\theta \times -cot \theta \times -tan \theta

\implies cos \theta \times cot\theta \times tan \theta

\implies cos \theta \times 1

\implies cos \theta

The value is \mathsf {cos\: \theta}

FORMULAS USED :

sin(90+\theta)=cos\theta

cot(\frac{3\pi}{2}-\theta)=-tan\theta

cot(\pi-\theta)=-cot\theta

cot\theta\times tan\theta=1

Hope it helps :-)

_____________________________________________________________

Answered by siddhartharao77
6

Answer:

cosθ

Step-by-step explanation:

Important Formulas:

(i) sin(90 + θ) = cosθ

(ii) cot(90 - θ) = tanθ

(iii) cot(2Π - θ) = -cotθ


Now,

Given Equation is sin(π/2 + θ) * cot(π/2 - θ) * cot(3π/2 + θ)

Putting π = 180°.

= sin[90 + θ] * cot[180 - θ] * cot[270 + θ]

= cosθ * -cotθ * cot[360° - 90° + θ]

= cosθ * -cotθ * cot[360° - (90 - θ)]

= cosθ * -cotθ * cot[2π - (90 - θ)]

= cosθ * -cotθ * -cot[90 - θ]

= cosθ * -cotθ * -tanθ

= cosθ * cotθ * tanθ

= cosθ * cotθ * (1/cotθ)

= cosθ.


Hope it helps!

Similar questions