Physics, asked by IITGENIUS1234, 1 year ago

♥ Hello Friends !!! ♥


Answer this question ⤵⤵


 \sf{Refractive \:  Index  \: of  \: water \:  with \:  respect  \: to \:  air \:  is  \: \sqrt{3}. }
\sf{A  \: light \:  ray \:  is  \: incident \:  on  \: the \:  surface  \: at  \: an  \: angle  \: of \:  60°  }
 \sf{travelling \: through  \: water. The  \:angle \: of \: deviation \:  of \:  light  \: ray \:  is}


❎ NO SPAM ANSWERS ❎


First and best => Brainliest

Answers

Answered by Anonymous
2

Formula of refractive index :


\mathsf{Refractive=\frac{sini}{sinr}}


Given info :

Angle of incidence ( i ) = 60° .

Angle of refraction ( r ) = ?


\mathsf{\sqrt{3}=\frac{sin60^\circ}{sinr}}\\\\\mathsf{=\:>\sqrt{3}=\frac{\frac{\sqrt{3}}{2}}{sinr}}\\\\\mathsf{=\:>\sqrt{3}=\frac{\sqrt{3}}{2sinr}}\\\\\mathsf{=\:>1=\frac{1}{2sinr}}


\mathsf{=\:>sinr=\frac{1}{2}}\\\\\mathsf{=\:>sinr=sin30^\circ}\\\\\mathsf{=\:>r=30^\circ}


\textsf{Angle of deviation = angle of incidence - angle of refraction}


\mathsf{=\:>60^\circ-30^\circ}\\\\\mathsf{=\:>30^\circ}



ANSWER :

\mathsf{\huge{30^\circ}}


_________________________________________________________

Attachments:
Answered by nalinsingh
1

Hey!!


Please see the attached file!!




Thanks!

Attachments:
Similar questions