Math, asked by IITGENIUS1234, 1 year ago

♥ Hello Friends !!! ♥


Answer this question ⤵⤵


\textsf {If the ordered pair satisfying the equations}
\mathsf {a_1x + b_1y + c_1 = 0  \: and \:  a_2x + b_2y + c_2 = 0 \: has \: 1 \: as \: its \: }
\textsf {first coordinate, then which of the following is correct ?}


\mathsf  {a) \:  \: {\dfrac {a_1 + b_1}{a_2 + b_2} = {\dfrac {c_1}{c_2}}}}


\mathsf {b)  \:  \: {\dfrac{b_1 + c_1}{b_2 + c_2} = {\dfrac {a_1}{b_2}}}}


\mathsf {c)  \:  \: {\dfrac {c_1 + a_1}{c_2 + a_2} = {\dfrac {b_1}{b_2}}}}


\textsf {d) All the above}


❎ NO SPAM ANSWERS ❎



First and best => Brainliest

Answers

Answered by Anonymous
8

\textsf{The two equations are : }


\mathsf{a_1x+b_1y+c_1=0}


\mathsf{a_2x+b_2+c_2=0}


\underline{\underline{\huge\textsf{{{Cross Multiplication Method}}}}}



\textsf{By cross multiplication method , we know that :- }

\mathsf{\frac{x}{b_1c_2-b_2c_1}=\frac{y}{a_2c_1-a_1c_2}=\frac{1}{a_1b_2-a_2b_1}}


\implies \mathsf{\frac{x}{b_1c_2-b_2c_1}=\frac{1}{a_1b_2-a_2b_1}}


\textsf{The solution of the 2 equation lies on (x,y)}\\\\\textsf{The first coordinate is 1  }\\\\\\\textsf{Hence, value of x is 1 }


\textsf{Put this value of x in the cross multiplication formula to get :}


\implies \:\:\:\mathsf{\frac{1}{b_1c_2-b_2c_1}=\frac{1}{a_1b_2-a_2b_1}}


\implies \:\:\:\mathsf{a_1b_2-a_2b_1=b_1c_2-b_2c_1}


\implies \:\:\:\mathsf{a_1b_2+b_2c_1=b_1c_2+b_1a_2}


\implies \:\:\:\mathsf{b_2(a_1+c_1)=b_1(a_2+c_2)}


\implies \:\:\:\mathsf{\frac{b_1}{b_2}=\frac{a_1+c_1}{a_2+c_2}}



\textsf{\huge{\underline{\underline{\underline{ANSWER}}}}}


\bf{\textsf{OPTION\:\:C}}



\textsf{Hope it helps !}


_____________________________________________________________________


IITGENIUS1234: thank you so much
Anonymous: welcome :-)
Answered by cutipie95
0
Hope it's helpful please mark it as brainlist
Attachments:

IITGENIUS1234: you copied I know
IITGENIUS1234: you copier
IITGENIUS1234: you copied his answer and wrote on a paper
Similar questions