Math, asked by raghuj2121, 9 months ago

Hello friends here is ur question...
in an ap if s3=24 and s4=30 then find a4 ...
please friends solve it fast it's urgent please friends ...​

Answers

Answered by MaheswariS
0

\textbf{Given:}

\text{In an A.P, $S_3=24$ and $S_4=30$}

\textbf{To find:}

a_4

\textbf{Solution:}

\textbf{Formula used}

\text{The n th term of the A.P a, a+d, a+2d, ....... is}

\boxed{\bf\,t_n=a+(n-1)d}

\text{The sum of n terms of the A.P a, a+d, a+2d,.... is}

\boxed{\bf\,S_n=\frac{n}{2}[2a+(n-1)d]}

S_3=24

\frac{3}{2}[2a+2d]=24

\frac{1}{2}[2(a+d)]=8

\implies\bf\,a+d=8---------(1)

S_4=30

\frac{4}{2}[2a+3d]=30

2[2a+3d]=30

\implies\bf\,2a+3d=15------(2)

\text{Using (1) in (2), we get}

2a+3(8-a)=15

2a+24-3a=15

-a=-9

\implies\bf\,a=9

\text{(1) gives}

9+d=8

\implies\bf\,d=-1

\text{Now,}

a_4

=\text{4 th term of the A.P}

=a+3d

=9+3(-1)

=9-3

=6

\implies\boxed{\bf\,a_4=6}

\text{}

Similar questions