HELLO FRIENDS ♥️♥️♥️♥️♥️
moderator
branily star
best user
please answer this question please
Attachments:
Answers
Answered by
3
Given :
(I) x² + kx - 21 = 0
(II) x² + kx - 5 = 0
(III) x² + 12x + k = 0
To find :
The value of k, such that the number given against each equation is one of its roots.
(I) 3 (II) 1 (III) -5
Solution :
(I) f(x) = x² + kx - 21 = 0
We have, x = 3
⇒ 3² + 3k - 21 = 0
⇒ 9 + 3k - 21 = 0
⇒ 3k - 12 = 0
⇒ 3k = 12
⇒ k = 12/3
⇒ k = 4
(II) f(x) = x² + kx - 5 = 0
We have, x = 1
⇒ 1 + k - 5 = 0
⇒ k - 4 = 0
⇒ k = 4
(III) f(x) = x² + 12x + k = 0
We have, x = -5
⇒ (-5)² + 12(-5) + k = 0
⇒ 25 + (-60) + k = 0
⇒ 25 - 60 + k = 0
⇒ k - 35 = 0
⇒ k = 35
...ッ
Similar questions