hello friends please help me
Answers
Step-by-step explanation:
Step-by-step explanation:
#JaiBhavaniJaiShivaji™
Answer:
Step-by-step explanation:
\begin{gathered}\sf \frac { 6{x}^{2} -5x - 3 }{ {x}^{2} - 2x + 6 } < 4 \\ \\ \sf \frac { 6{x}^{2} -5x - 3 }{ {x}^{2} - 2x + 6 } - 4 < 0 \\ \\ \sf \frac { 6{x}^{2} -5x - 3 - 4({x}^{2} -2x + 6) }{ {x}^{2} - 2x + 6 } < 0 \\ \\\sf \frac { 6{x}^{2} -5x - 3 - 4{x}^{2} +8x -24 }{ {x}^{2} - 2x + 6 } < 0\\ \\ \sf \frac { 2{x}^{2} +3x - 27}{ {x}^{2} - 2x + 6 } < 0 \\ \\ \sf Let \:us\:check\:the\: \Delta \: for \:the \:denominator \\ \\ \sf \Delta = {b}^{2} - 4ac \\ \\ \sf = {2}^{2} - 4 × 6 \\ \\ \sf = - 22 \\ \\ \sf < 0 \\ \\ \sf Hence\:the\: denominator\:is\:always\:positive \\ \\ \sf \therefore 2{x}^{2} + 3x - 27 < 0 \\ \\ \sf \therefore 2{x}^{2} - 6x + 9x - 27 < 0 \\ \\ \sf \therefore 2x ( x - 3 ) + 9 ( x - 3 ) < 0 \\ \\ \sf \therefore ( x - 3 )( 2x + 9 ) < 0 \\ \\ \sf Now\:using\:wavy\:curve\:method\: \\ \\ \sf x \belongs [ - \frac {9}{2} , 3 ] \\ \\ \sf Hence\: option\:A \:is \:correct \end{gathered}
x
2
−2x+6
6x
2
−5x−3
<4
x
2
−2x+6
6x
2
−5x−3
−4<0
x
2
−2x+6
6x
2
−5x−3−4(x
2
−2x+6)
<0
x
2
−2x+6
6x
2
−5x−3−4x
2
+8x−24
<0
x
2
−2x+6
2x
2
+3x−27
<0
LetuschecktheΔforthedenominator
Δ=b
2
−4ac
=2
2
−4×6
=−22
<0
Hencethedenominatorisalwayspositive
∴2x
2
+3x−27<0
∴2x
2
−6x+9x−27<0
∴2x(x−3)+9(x−3)<0
∴(x−3)(2x+9)<0
Nowusingwavycurvemethod
x\belongs[−
2
9
,3]
HenceoptionAiscorrect
Step-by-step explanation:
be brainly