English, asked by princess2131, 1 year ago

Hello..!!! guys a difficult one !!! ----- If tan = a / b , then prove that b sec ¤ / a cosec¤ = 1 ​

Answers

Answered by ashish1234586
1

Answer:

Sorry I didn't know answer of this question

Answered by skyfall63
2

Given:

\tan \theta=\frac{a}{b}

Solution:

\frac{b \sec \theta}{a \csc \theta}=1

According to trigonometric function, the secant is the inverse of cosine.

\sec \theta=\frac{1}{\cos \theta}

According to trigonometric function, the cosecant is inverse of sine.

\csc \theta=\frac{1}{\sin \theta}

On applying, both the trigonometric function in the given expression,

\Rightarrow \frac{b \sec \theta}{a \csc \theta}=\frac{b\left(\frac{1}{\cos \theta}\right)}{a\left(\frac{1}{\sin \theta}\right)}

On taking reciprocal,

\Rightarrow \frac{b \sec \theta}{a \csc \theta}=\frac{b \sin \theta}{a \cos \theta}

Now, the above expression becomes,

\Rightarrow \frac{b \sec \theta}{a \csc \theta}=\frac{b}{a} \times \frac{\sin \theta}{\cos \theta}

From question, on substituting the value of tangent,

\Rightarrow \frac{b \sec \theta}{a \csc \theta}=\frac{b}{a} \times \frac{a}{b}

On cancelling values,

\therefore \frac{b \sec \theta}{a \csc \theta}=1

Hence proved.

Similar questions