Math, asked by shashi1979bala, 1 month ago

Hello guys! I need the ans. urgently
if 2\sqrt{x} + \sqrt{5x - 4\sqrt{x} } =1
then \\show \\that x-1 = 0

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

2 \sqrt{x}  +  \sqrt{5 - 4 \sqrt{x} }  = 1 \\

 \implies  \sqrt{5 - 4 \sqrt{x} }  = 1 - 2 \sqrt{x}  \\

 \implies  5 - 4 \sqrt{x}  = (1 - 2 \sqrt{x})^{2}   \\

 \implies  5 - 4 \sqrt{x}  = 1  + 4x  - 4 \sqrt{x}   \\

 \implies  5   - 1=  4x    \\

 \implies    4x  = 4   \\

 \implies    x  = 1 \\

 \sf \pink{ \implies    x   -  1 = 0} \\

Answered by mathdude500
5

 \green{\large\underline{\sf{Given- }}}

\rm :\longmapsto\:2\sqrt{x} + \sqrt{5x - 4\sqrt{x} } =1

 \blue{\large\underline{\sf{To\:show - }}}

\rm :\longmapsto\:x - 1 = 0

 \purple{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:2\sqrt{x} + \sqrt{5x - 4\sqrt{x} } =1

To solve, such type of equations, we have to first Shift one of the square root on other side.

So, above equation can be rewritten as

\rm :\longmapsto\: \sqrt{5x - 4\sqrt{x} } =1 - 2 \sqrt{x}

On squaring both sides, we get

\rm :\longmapsto\: \bigg[{\sqrt{5x - 4\sqrt{x} }} \bigg]^{2}  =\bigg[1 - 2 \sqrt{x}\bigg]^{2}

We know that,

\red{ \boxed{ \sf{ \: {(x - y)}^{2} =  {x}^{2} +  {y}^{2}  -  2xy}}}

So, using this identity,

\rm :\longmapsto\:5x - 4 \sqrt{x} =  {1}^{2} +  {(2 \sqrt{x}) }^{2}  -  2 \times 1 \times 2 \sqrt{x}

\rm :\longmapsto\:5x -  \cancel{4 \sqrt{x}} =  1 +  4x  -  \cancel{4 \sqrt{x}}

\rm :\longmapsto\:5x = 1 + 4x

\rm :\longmapsto\:5x - 1  -  4x = 0

\rm :\longmapsto\:x - 1 = 0

Hence, Proved

Additional Information :-

More Identities to know :-

↝ (a + b)² = a² + 2ab + b²

↝ (a - b)² = a² - 2ab + b²

↝ a² - b² = (a + b)(a - b)

↝ (a + b)² = (a - b)² + 4ab

↝ (a - b)² = (a + b)² - 4ab

↝ (a + b)² + (a - b)² = 2(a² + b²)

↝ (a + b)³ = a³ + b³ + 3ab(a + b)

↝ (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions