Math, asked by shaiksadiq7755, 10 months ago

Hello guys this is my crazy question please solve this only the red rounded problem bumper offer No faultu solutions​

Attachments:

Answers

Answered by AdorableMe
71

_____________________

(6 - 4√2) / (6 + 4√2)

• By rationalizing the denominator :-

= (6 - 4√2)(6 - 4√2) / (6 + 4√2)(6 - 4√2)

= (6 - 4√2)² / [ (6)² - (4√2)² ]

= (6² + 4√2² - 2 × 6 × 4√2) / (36 - 32)

= (36 + 32 - 48√2) / 4

= (68 - 48√2) / 4

= [ 4(17 - 12√2) ] / 4

• 4 cancels in the numerator and the denominator :-

= 17 - 12√2

_____________________

Answered by Anonymous
11

\huge\underline\mathbb{\red S\pink{O}\purple{L} \blue{UT} \orange{I}\green{ON :}}

 ⟹\frac{6 -  4\sqrt{2} }{6 +  4\sqrt{2} }

  • Multiply both numerator & denominator by " 6 - 4√2 "

⟹ \frac{6 - 4 \sqrt{2} }{6  +   4\sqrt{2} }  \times  \frac{6 -  4\sqrt{2} }{6 -  4\sqrt{2} }

⟹ \frac{( {6 - 4 \sqrt{2}) }^{2} }{(6 +4  \sqrt{2})(6 -  4\sqrt{2}  )}

  • [ (a - b)² = a² + b² - 2ab ]

  • [ (a + b)(a - b) = a² - b² ]

⟹ \frac{ {(6)}^{2} +  {( 4\sqrt{2}) }^{2}  - 2(6)( 4\sqrt{2} ) }{ {(6)}^{2} -  {(4 \sqrt{2} )}^{2}  }

⟹ \frac{36  + 32 - 12 \sqrt{4} }{36 - 32}

⟹ \frac{68 -  48\sqrt{2} }{4}

⟹ \frac{68}{4}  -  \frac{48 \sqrt{4} }{4}

⟹17 - 12 \sqrt{2}

\underline{\boxed{\bf{\purple{∴ \frac{6 - 4 \sqrt{2} }{6 +  4\sqrt{2}  } = 17 - 12 \sqrt{2}   }}}}

Step-by-step explanation:

<marquee behaviour-move><font color="blue"><h2># PLEASE MARK ME AS BRAINLIEST✌✌✌</ ht></marquee>

Similar questions