Math, asked by IamSmart84, 1 year ago

Hello ! ❤❤



If x = 2 + √3

Find :

(i) X + 1 /x

(ii) X² + 1/x²

(iii) X³ + 1/ x³



thanks ! ☺☺☺

Answers

Answered by BrainlyQueen01
165

Hi there !


______________________


Given :


x = 2 + √3


To Find :


(i) x + 1 / x


(ii) x² + 1 / x²


(iii) x³ + 1 / x³


________________


Question I :


x = 2 + √3


1 / x = 1 / 2 + √3


1 / x = 1 / 2 + √3 × 2 - √3 / 2 - √3


1 / x = 2 - √3 / (2)² - (√3)²


1 / x = 2 - √3 / 4 - 3


1 / x = 2 - √3


Now,


x + 1 / x = 2 + √3 + 2 - √3


x + 1 / x = 2 + 2


x + 1 / x = 4  [Ans]


_____________________


Question II :


x + 1/x = 4


On squaring both sides ..


( x + 1/x )² = (4)²


x² + 1 / x² + 2 = 16


x² + 1 / x² = 16 - 2


x² + 1 / x² = 14  [Ans]


____________________


Question III :


x + 1 / x = 4


On cubing both sides ..


( x + 1/x )³ = (4)³


x³ + 1/x³ + 3 ( x + 1/x) = 64


x³ + 1/x³ + 3 (4) = 64


x³ + 1/x³ + 12  = 64


x³ + 1/x³ = 64 - 12


x³ + 1/x³ = 52  [Ans]


___________________


Thanks for the question !

Attachments:

BrainlyQueen01: Thanks :)
sidra1784: nyc ans di...✌✌❤
prachi7742: nyc ans di ^_^
pranav425: thx
Anonymous: EXECELLNT WORK ^_ ⭐⭐⭐⭐〽⚓
Answered by Sanskriti141
176
\bf{\huge{\underline{ANSWER}}}

_________________________

&lt;b&gt;GIVEN :<br /><br />x = 2 + √3<br /><br />_________________________<br /><br />SOLUTION :&lt;b&gt;

 \frac{1}{x} = \frac{1}{2 + \sqrt{3} }
Rationalising the denominator , we get



 \frac{(1) \: (2 - \sqrt{3}) }{(2 + \sqrt{3} ) \: (2 - \sqrt{3} )} \\ \\ = &gt; \: \frac{(2 - \sqrt{3}) }{ {2}^{2} - { \sqrt{3} }^{2} } \\ \\ = &gt; \frac{2 - \sqrt{3} }{4 - 3} \: \: \: \: = &gt; 2 - \sqrt{3}
___________________________

TO FIND :

( i )
x + \frac{1}{x} \\ \\ = &gt; 2 + \sqrt{3} + 2 - \sqrt{3} \\ \\ = &gt; 4 \: \: \: \: \: \\ \\ = &gt; \: x + \frac{1}{x} = 4 \: \: \: \: \: \: ans

____________________________

( ii )
 {x}^{2} + \frac{1}{ {x}^{2} } \\ \\ = &gt; (x + \frac{1}{x} ) = 4 \\ \\ = &gt; {(x + \frac{1}{x} })^{2} = {(4)}^{2} \\ \\ = &gt; {x}^{2} + \frac{1}{ {x}^{2} } + 2(x)( \frac{1}{x} ) = 16 \\ \\ = &gt; {x}^{2} + \frac{1}{ {x}^{2} } = 16 - 2 \\ \\ = &gt; {x}^{2} + \frac{1}{ {x}^{2} } = 14 \: \: \: \: \: ans

______________________________

( iii )
 {x}^{3} + \frac{1}{ {x}^{3} } \\ \\ = &gt; x + \frac{1}{x} = 4 \\ \\ = &gt; {(x + \frac{1}{x} })^{3} = ( {4)}^{3} \\ \\ = &gt; {x}^{3} + \frac{1}{ {x}^{3} } + 3(x)( \frac{1}{x} )(x + \frac{1}{x} ) = 64 \\ \\ = &gt; {x}^{3} + \frac{1}{ {x}^{3} } + 3 \: (4) = 64 \\ \\ = &gt; {x}^{3} + \frac{1}{ {x}^{3} } = 64 - 12 \\ \\ = &gt; {x}^{3} + \frac{1}{ {x}^{3} } = 52 \: \: \: \: \: ans

_______________________________

Hope it helps....

#BE BRAINLY

sainq: dear where is your answer
sainq: Sorry
sainq: hiii
kapilchaudhary2: gr8 ans ✌✌✌✌
Sanskriti141: thanks ☺
Similar questions