Math, asked by bhatiashresth, 1 month ago

Hello, in the pic, can someone please solve the 6th subdivision of Q 20.
Thanks : )

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \tt \: f(x) = a {x}^{2}  + bx + c

It's zeros are  \tt\blue{\alpha\:\:\&\:\:\beta}

So,

 \tt  \large{\purple{ • \: Sum \:  \: of \:  \: roots \:  \: , (\alpha  +  \beta ) =   - \frac{b}{a} }} \\

 \tt  \large{\purple{ • \: Product\:  \: of \:  \: roots \:  \: , (\alpha   \beta ) =    \frac{c}{a} }} \\

Now,

 \sf \color{violet} \frac{1}{a \alpha  + b} +  \frac{1}{a \beta  + b}   \\

 \sf \color{violet} =  \frac{a \beta  + b + a \alpha  + b}{(a \alpha  + b)(a \beta  + b)}   \\

 \sf \color{violet} =  \frac{a( \alpha  +  \beta ) + 2b }{a ^{2}  \alpha   \beta + ab \beta  + ab \alpha  + b^{2} }   \\

 \sf \color{violet} =  \frac{a( \alpha  +  \beta ) + 2b }{a ^{2}  \alpha   \beta  + ab (\alpha +  \beta )  + b^{2} }   \\

 \sf \color{violet} =  \frac{a \bigg( -  \dfrac{b}{a} \bigg ) + 2b }{a ^{2}\cdot \dfrac{c}{a}  + ab  \bigg(  - \dfrac{b}{a}  \bigg)  + b^{2} }   \\

 \sf \color{violet} =  \frac{ - b + 2b }{ac  - b^{2}  + b^{2} }   \\

 \sf \color{violet} =  \frac{ b }{ac  }   \\

Similar questions