Math, asked by Tanishka2801, 11 months ago

HELLO MATE!!!!

plz help me in trigonometry :

tanA/1-CotA+CotA/1-tanA=(1+tanA+cotA)​

Answers

Answered by Anonymous
3

Step-by-step explanation:

________HEY! MATE ____

REFER THE ATTACHMENT FOR THE ANSWER! !!!

Attachments:
Answered by rishu6845
8

To prove ---->

 \dfrac{tan \alpha }{1 - cot \alpha }  \:   +  \dfrac{cot \alpha }{1 - tan \alpha } = 1 + tan \alpha  + cot \alpha

Concept used---->

1)

cot \beta  =  \dfrac{1}{tan \beta }

2)

 {a}^{3}  \:  -  {b}^{3} \:  = (a - b) \: ( {a}^{2} \:  +  {b}^{2} \:  + ab )

Proof----> LHS

 =  \dfrac{tan \alpha }{1 - cot \alpha }  +  \dfrac{cot \alpha }{1 - tan \alpha } \\  =  \dfrac{tan \alpha }{1 -  \dfrac{1}{tan \alpha } }  +  \dfrac{ \dfrac{1}{tan \alpha } }{1 - tan \alpha } \\  =  \dfrac{tan \alpha }{ \dfrac{tan \alpha  - 1}{tan \alpha } } +  \dfrac{1}{ - tan \alpha (tan \alpha  - 1)}  \\  =  \frac{tan ^{2} \alpha  }{tan \alpha  - 1}  -  \dfrac{1}{tan \alpha (tan \alpha  - 1)}

 =  \dfrac{ {tan}^{3} \alpha  - 1 }{tan \alpha  \: (tan \alpha  \:  -  \: 1)}

 =  \dfrac{ {(tan \alpha) }^{3} - (1) ^{3}  }{tan \alpha \:  (tan \alpha  - 1)}

 =  \dfrac{(tan \alpha  - 1) \: ( {tan}^{2} \alpha  + 1 + tan \alpha ) }{tan \alpha \:  (tan \alpha  - 1)}

(tan \alpha  - 1) \: is \: cancel \: out \: from \: numerator \: and \: denominator \:

 \dfrac{ {tan}^{2} \alpha  }{tan \alpha }  +  \dfrac{1}{tan \alpha }  +  \dfrac{tan \alpha }{tan \alpha }

 = tan \alpha  + cot \alpha  + 1

= RHS

Similar questions