Math, asked by Brainly9b78, 1 year ago

⚪⚪Hello Mates⚪⚪

.
.
.
.

⚡Answer the question.⚡

.
.
.
.
.

❄Find the minimum value of 5cosA + 12sinA + 12.❄


Anonymous: - 1
Ugoel911: Answer is -1 since acosA+bsinA has least value -rt((a)sq+(b)sq). Hence ans will be -13+12= -1

Answers

Answered by Anonymous
9

Answer :

Minimum value of 5 cos A + 12 sin A = - √( 5² + 12² )

⇒ -√( 25 + 144 )

⇒ - √( 169 )

⇒ - 13

Hence 5 cos A + 12 sin A will have the minimum value of - 13 .

The minimum value of 5 cos A + 12 sin A + 12 will be :

- 13 + 12

⇒ - 1

The minimum value of the equation is - 1 .

Explanation :

The minimum value of a cos A + b sin A = - √( a² + b² )

The maximum value of a cos A + b sin A = + √( a² + b² )

Hence we will find the minimum value of 5 cos A + 12 sin A by putting 'a' as 5 and 'b' as 12 .

Then after getting the value add 12 to the minimum value and we will get our answer .

Answered by generalRd
2

ANSWER

Given=

>5cosA + 12sinA + 12

=>13{\dfrac{5}{13}CosA + \dfrac{12}{13}SinA} + 12

Let, Cos\theta = \dfrac{5}{13}

then Sin\theta= \dfrac{12}{13}

So we get =>

=>13(CosA × Cos\theta + SinA × Sin\theta) +12

=>13{Cos(A - \theta)}

Here the minimum value of {Cos(A - \theta)} is -1.

Hence the minimum value of 5cosA + 12sinA + 12 will be -13 + 12=1.

Similar questions