⚪⚪Hello Mates⚪⚪
.
.
.
.
⚡Answer the question.⚡
.
.
.
.
.
❄Find the minimum value of 5cosA + 12sinA + 12.❄
Answers
Answer :
Minimum value of 5 cos A + 12 sin A = - √( 5² + 12² )
⇒ -√( 25 + 144 )
⇒ - √( 169 )
⇒ - 13
Hence 5 cos A + 12 sin A will have the minimum value of - 13 .
The minimum value of 5 cos A + 12 sin A + 12 will be :
- 13 + 12
⇒ - 1
The minimum value of the equation is - 1 .
Explanation :
The minimum value of a cos A + b sin A = - √( a² + b² )
The maximum value of a cos A + b sin A = + √( a² + b² )
Hence we will find the minimum value of 5 cos A + 12 sin A by putting 'a' as 5 and 'b' as 12 .
Then after getting the value add 12 to the minimum value and we will get our answer .
ANSWER
Given=
>5cosA + 12sinA + 12
=>13{} + 12
Let, Cos =
then Sin=
So we get =>
=>13(CosA × Cos + SinA × Sin) +12
=>13{Cos(A - )}
Here the minimum value of {Cos(A - )} is -1.
Hence the minimum value of 5cosA + 12sinA + 12 will be -13 + 12=1.