Hello Mates,
Please answer it..
Answers
Answer:
0.505
Step-by-step explanation:
Given: (1 - 1/2²)(1 - 1/3²)(1 - 1/4²)(1 - 1/5²) ............. (1 - 1/85²)
= (1 - 1/4)(1 - 1/9)(1 - 1/16)(1 - 1/25) ...... (1 - 1/7225)
= (3/4)(8/9)(15/16)(24/25).....(7224/7225)
Now,
(i)
(3/4) * (8/9)
= 24/36
= 6/9
(ii)
(3/4) * (8/9) * (15/16)
= (6/9) * (15/16)
= 90/96
= 10/16
(iii)
(3/4) * (8/9) * (15/16) * (24/25)
= (10/16) * (24/25)
= (240/400)
= 15/25
Here,
Numerator = 6,10,15... = (n²/2) + (3n/2) + 1 {Where n > 2}
Denominator = 9,16,25.. = (n + 1)² {Where n > 2}
Now,
Total number of terms n = 84.
⇒ (n²/2 + 3n/2 + 1)/(n + 1)²
⇒ (84²/2 + 126 + 1)/(85)²
⇒ ~0.505
Hope it helps!
1-1/k2=(k2-1)/k2=(k+1)(k-1)/k2
donc [2;2004] [1-1/k2]
= [2;2004] (k+1) [2;2004](k-1)/[ [2;2004]k [2;2004]k]
or
[2;2004](k+1)=\frac{1}{2}(2005!)
[2;2004](k-1)=2003!
[2;2004]k=2004!
et donc en remplaçant :
x=(1-1/2²)(1-1/3²)(1-1/4²)...(1-1/2004²)
= \frac{1}{2}(2005!)(2003!)/[(2004!)(2004!)]
=\frac{1}{2}[2005!/2004!][2003!/2004!]