Math, asked by ihaveaquestion78, 1 year ago

HELLO

MATHS EXPERTS ♥️ ❤️ ♥️ ❤️

Solve this attachment question

NOTE >Solve both questions 15 and 16
Right answer will mark as brainlist ✌️
❎ Don't spam ❎

Attachments:

Answers

Answered by satishraj29
1

Answer:

thank you for see the answer

Attachments:

satishraj29: thank
Answered by pratyush4211
7

15.

 \frac{1}{1 +  {x}^{a - b} }  +  \frac{1}{1 +  {x}^{b - a} }  \\  \\

LCM=Product of Denominator.

LCM=[1+x^(a-b)]×[1+x^(b-a)]

 \frac{1(1 +  {x}^{b - a}) +1(1 +  {x}^{a - b} )  }{(1 +  {x}^{a - b})( 1 +  {x}^{b - a} )}  \\  \\  \frac{1 +  {x}^{b - a}  + 1 +  {x}^{a- b} }{1 +  {x}^{b - a} +  {x}^{a - b}   +  {x}^{a - b}  \times  {x}^{b - a} }  \\  \\  \frac{2 +  {x}^{b - a} +  {x}^{a - b}  }{1 +  {x}^{b - a}  +  {x}^{a - b}  +  {x}^{a - b + b - a} }  \\  \\  \frac{2 +  {x}^{b - a} +  {x}^{a - b}  }{1 +  {x}^{b - a} +  {x}^{a - b}  +  {x}^{0}  }  \\  \\  \frac{2 +  {x}^{b - a} +  {x}^{a - b}  }{1 +  {x}^{b - a} +  {x}^{a - b} + 1  }  \\  \\  \cancel{ \frac{2 +  {x}^{b - a} +  {x}^{a - b}  }{2+  {x}^{b - a} +  {x}^{a - b}   }} \\  \\  = 1

16.

 {25}^{x - 1}  =  {5}^{2x - 1}   -  100 \\  \\  {5}^{2(x - 1)}  =  {5}^{2x - 1}  - 100 \\  \\  {5}^{2x - 2}  =  {5}^{2x - 1}  - 100 \\  \\  {5}^{2x}  \times  {5}^{ - 2}  =  {5}^{2x}  \times  {5}^{ - 1}  - 100 \\  \\  {5}^{2x}  \times  \frac{1}{ {5}^{2} }  =  {5}^{2x}  \times  \frac{1}{5}  - 100 \\  \\  \frac{ {5}^{2x} }{25}  =  \frac{ {5}^{2x} }{5}  - 100 \\  \\  \frac{ {5}^{2x} }{25}  -  \frac{ {5}^{2x} }{5}  =  - 100 \\  \\  {5}^{2x} ( \frac{1}{25}  -  \frac{1}{5} ) =  - 100 \\  \\  {5}^{2x}  \times ( \frac{1 - 1 \times 5}{25} ) =  - 100 \\  \\  {5}^{2x}  \times  \frac{ - 4}{25}  =  - 100 \\  \\  {5}^{2x }  =  - 100  \times \frac{ 25}{ - 4}  \\  \\  {5}^{2x}  = 25 \times 25 \\  \\  {5}^{2x}  =  {5}^{2}  \times  {5}^{2}  \\  \\  {5}^{2x}  =  {5}^{2  + 2}  \\  \\  {5}^{2x}  =  {5}^{4}  \\  \\ 2x = 4 \\  \\ x =  \frac{4}{2}  \\  \\ x = 2

REMEMBER

 {a}^{x}  \times  {a}^{y}  =  {a}^{x + y}  \\  \\  {a}^{0}  = 1 \\  \\  {a}^{ - 1}  =  \frac{1}{a}

Similar questions