Math, asked by ihaveaquestion6, 11 months ago

HELLO

MATHS EXPERTS ♥️ ❤️ ♥️ ❤️

Solve this attachment question
NOTE >Solve both questions 18 and 19.
Right answer will mark as brainlist ✌️

❎ ❎Don't spam ❎ ❎ ​

Attachments:

Answers

Answered by pratyush4211
59

18.

 {a}^{x}  = b \\  \\  {b}^{y}  = c \\  \\  {c}^{z}  = a

Value of (b) given=a^x

Then

 {(b)}^{y}   = c\\  \\ b =  {a}^{x}  \\  \\ ( {a}^{x} ) {}^{y}  = c \\  \\  {a}^{xy}  = c

So

C=a^xy

Now Given

 {(c)}^{z}  = a

Putting Value of C as a^xy

( {a}^{xy}) {}^{z}   = a \\  \\  {a}^{xyz}  = a

Remember When Base is Same in LHS and RHS of Equation Then Powers are Written as Equation.

 {a}^{xyz}  = a \times 1 \\  \\ xyz = 1

Proved√√

19.

 {2}^{x  +  1}  \times  {3}^{y - 1}  = (2\times 3) {}^{5}  \\  \\  {2}^{x + 1}  \times  {3}^{y - 1}  =  {2}^{5}  \times  {3}^{5}

Comparing Both Sides

 {2}^{x + 1}  =  {2}^{5}  \\  \\ x + 1 = 5 \\  \\ x = 5 - 1 \\  \\ x = 4

 {3}^{y - 1}  =  {3}^{5}  \\  \\ y - 1 =  {5}^{} \\  \\ y = 5+ 1 \\  \\ y = 6

X=4

Y=6

3x-2y

3×4-2×6

12-12

=0

Answer=0


ihaveaquestion6: answer of question no. 19 is 0
pratyush4211: sorry..done
ihaveaquestion6: thnx : )
pratyush4211: :)
Answered by BraɪnlyRoмan
293

\huge \boxed{ \underline{ \underline{ \bf{Answer}}}}

18 ]

GIVEN :

 \sf{{a}^{x}  = b \:  \:  \: ,{b}^{y}  = c \:  \:  \: ,{c}^{z}  = a}

TO PROVE :

 \implies \sf{xyz = 1}

PROOF :

 \implies \:  \sf{ {a}^{x}  = b \:  \:  \rightarrow \: (1)}

 \implies \:  \sf{ {b}^{y}  = c} \:  \:

Putting the value of 'b' from equation (1) we get,

 \implies \:  \sf{ { ({a}^{x}) }^{y}  = c} \:  \:

 \implies \:  \sf{ { {a}^{xy} } = c} \:  \:  \:  \rightarrow \: (2)

 \sf {\implies \:  {c}^{z}  = a}

Putting the value of 'c' from equation (2) we get,

 \sf {\implies \:  {( {a}^{xy} )}^{z}  = a}

 \sf {\implies \:  { {a}^{xyz}  }= a}

 \implies \: \sf{xyz \:  =  \: 1}

 \boxed{ \sf{Hence, proved.}}

19]

GIVEN :

 \sf{ {2}^{ x + 1} . \:  {3}^{y - 1}  =  {(2 \: . \: 3)}^{5} }

TO FIND :

  =  \:  \sf{3x - 2y}

SOLUTION :

 \implies \:  \sf{ {2}^{ x + 1} . \:  {3}^{y - 1}  =  {(2 \: . \: 3)}^{5}}

 \implies \:  \sf{ {2}^{ x + 1} . \:  {3}^{y - 1}  =  { {2}^{5} . \:  {3}^{5}}}

On comparing both sides we get,

 \sf{ \implies \:  {2}^{x + 1}  =  {2}^{5}  \:  \:  \rightarrow(1) \: and \:  \:  {3}^{y - 1}  =  {3}^{5}  \rightarrow(2)}

Solving (1) we get,

 \sf{ \implies \:  {2}^{x + 1}  =  {2}^{5}}

 \sf{ \implies \: {x + 1}  =  {5}}

 \sf{ \implies \: {x }  =  4}

Solving (2) we get,

 \sf{ \implies \: {3}^{y - 1}  =  {3}^{5} }

 \sf{ \implies \: y - 1  =  5}

 \sf{ \implies \: y  =  6}

Now, putting the values of 'x' and 'y' in our required we get,

  =  \:  \sf{3x - 2y}

  =  \:  \sf{3(4)- 2(6)}

 = 12 - 12

 = 0

 \boxed { \sf{ \:Hence,  \: 3x - 2y} = 0}


23232: Hii
Similar questions