hello my dear brothers and sisters please help me in this
with step by step explanation wrong answer will be reported
this is class 8 math IIT jee level 4
Answers
Hello sis
23. x+y = 1
(x+y)ⁿ = ⁿC₀ xⁿ y⁰ + ⁿC₁ xⁿ ⁻¹ y + ...... + ⁿCₙ x⁰ yⁿ
When you substitute 0, the whole term will become zero
As you know that x+y = y+x,
y+x = 1
So, when we write (y+x)ⁿ :
(y+x)ⁿ = ⁿC₀ yⁿ x⁰ + ⁿC₁ yⁿ⁻¹ x +....+ ⁿCₙ xⁿ y⁰
Now differentiate on both sides:
n(x+y)ⁿ⁻¹ = ⁿC₁ yⁿ⁻¹ + 2 ⁿC₂ x yⁿ⁻² +........+ n ⁿCₙ xⁿ⁻¹
multiplying by x on both sides, you will get:
nx (y+x)ⁿ⁻¹ = ⁿC₁ x yⁿ⁻¹ + 2 C₂ x² yⁿ⁻² +.....+ ⁿCₙ xⁿ⁻¹ × x
= C₁ x yⁿ⁻¹ + 2 C₂ x² yⁿ⁻² +.....+ ⁿCₙ xⁿ
So, you need the value of the expression that is at the left side
substitute y+x = 1
You will get:
nx (1)ⁿ⁻¹ = C₁ x yⁿ⁻¹ + 2 C₂ x² yⁿ⁻² +.....+ ⁿCₙ xⁿ
Anything power 1 =1
So, nx = C₁ x yⁿ⁻¹ + 2 C₂ x² yⁿ⁻² +.....+ ⁿCₙ xⁿ
So, your answer is option 3
24. ³⁴C₅+
= ³⁴C₅+ ³⁸C₄+ ³⁷C₄+ ³⁶C₄ + ³⁵C₄+ ³⁴C₄
=(³⁴C₅+³⁴C₄) + ³⁵C₄+ ³⁶ C₄+ ³⁷C₄+ ³⁸C₄
=³⁵C₅ + ³⁵C₄ + ³⁶C₄ + ³⁷C₄ + ³⁸C₄ (∵ ⁿC+ ⁿC= ⁿ⁺¹C)
=³⁶C₅ + ³⁶C₄ + ³⁷C₄ + ³⁸C₄
= ³⁷C₅ + ³⁷C₅ + ³⁸C₄
= ³⁸C₅ + ³⁸C₄
= ³⁹C₅
=34! × 5! × 39!
=5 × 4 × 3 × 2 × 1 × 39 × 38 × 37 × 36 × 35 (∵ ⁿC=r!(n−r)!n!)
Hence the value is ³⁹C₅ which is option 1
25. ⁿP = (n−r)! n!
Now 5040 =10(9)(8)(7)
=
=
= ¹⁰P₄
Hence, n= 10 and r= 4
Option 2 is your answer
Please mark me brainliest