HELLO!!!! please help me friends :
find k so that x² + 2x + k is a 2x∧4 +x³ - 14x² +5x+6 . Also find all the zeroes of the two polynomials.
Answers
Given factor: x^2 + 2x + k = 0
Given polynomial: 2x^4 + x^3 -14x^2 + 5x + 6
Divide the polynomial by the factor
x^2 + 2x + k ) 2x^4 + x^3 -14x^2 + 5x + 6 ( 2x^2 - 3x +(- 8 - 2k)
2x^4 + 4x^3 +2kx^2 ( substract)
------------------------------
- 3x^3 +(-14 - 2k)x^2 + 5x
- 3x^3 - 6x^2 - 3kx ( substract)
------------------------------
(- 8 - 2k) x^2 +( 5 + 3k)x + 6
(- 8 - 2k) x^2 +(-16 - 4k)x + (- 8k - 2k^2) ( substract)
-----------------------------------------------------------------
( 21 + 7k)x + (6 + 8k + 2k^2)
The remainder is: ( 21 + 7k)x + (6 + 8k + 2k^2) = 0
21 + 7k = 0 ⇒ k = -3.
The factors are x^2 + 2x - 3 = 0 and 2x^2 - 3x - 2 = 0
x^2 + 3x - x - 3 = 0 and 2x^2 - 4x + x - 2 = 0
x( x + 3 )-1( x + 3) = 0 and 2x (x - 2) + 1(x - 2) = 0
(x - 1)( x + 3) = 0 and (2x + 1)(x - 2) = 0
x = 1 ,3 ,-1 / 2 and 2.
The zeros are 1 ,3 ,-1 / 2 and 2.