Math, asked by oisci564, 1 year ago

HELLO!!!! please help me friends :
find k so that x² + 2x + k is a 2x∧4 +x³ - 14x² +5x+6 . Also find all the zeroes of the two polynomials.

Answers

Answered by preranaupadhyay742
0

Given factor: x^2 + 2x + k = 0

Given polynomial: 2x^4 + x^3 -14x^2 + 5x + 6

Divide the polynomial by the factor

x^2 + 2x + k ) 2x^4 + x^3 -14x^2 + 5x + 6 ( 2x^2 - 3x +(- 8 - 2k)

                   2x^4 + 4x^3 +2kx^2 ( substract)

                  ------------------------------

                   - 3x^3 +(-14 - 2k)x^2 + 5x

                  - 3x^3 - 6x^2 - 3kx ( substract)

                  ------------------------------

                  (- 8 - 2k) x^2 +( 5 + 3k)x + 6

                  (- 8 - 2k) x^2 +(-16 - 4k)x + (- 8k - 2k^2) ( substract)

                  -----------------------------------------------------------------

                  ( 21 + 7k)x + (6 + 8k + 2k^2)

The remainder is: ( 21 + 7k)x + (6 + 8k + 2k^2) = 0

                   21 + 7k = 0 ⇒ k = -3.

The factors are x^2 + 2x - 3 = 0 and 2x^2 - 3x - 2 = 0

x^2 + 3x - x - 3 = 0 and 2x^2 - 4x + x - 2 = 0

x( x + 3 )-1( x + 3) = 0 and 2x (x - 2) + 1(x - 2) = 0

(x - 1)( x + 3) = 0 and (2x + 1)(x - 2) = 0

x = 1 ,3 ,-1 / 2 and 2.

The zeros are 1 ,3 ,-1 / 2 and 2.


oisci564: hi..how did you get 2k in the end of the Quotient? please explain this alone Friend..
Similar questions