Math, asked by ariRongneme, 17 days ago

hello, please help me to solve this problem.​

Attachments:

Answers

Answered by mathdude500
2

Given Question :-

Find the area of triangle whose sides are along the lines x = 2, y = 0 and 4x + 5y = 20.

\large\underline{\sf{Solution-}}

Given that, three sides of a triangle are along the line

\rm \: 4x + 5y = 20 -  -  - (1) \\

\rm \: x = 2 -  -  -  - (2) \\

\rm \: y = 0 -  -  -  - (3) \\

[ See the attachment ]

So, required area of triangle ABC is given by

\rm \:  =  \: \displaystyle\int_2^5\rm y_{(line \: 1)} \: dx \\

\rm \:  =  \: \displaystyle\int_2^5\rm \dfrac{20 - 4x}{5}  \: dx \\

\rm \:  =  \:  \frac{1}{5} \displaystyle\int_2^5\rm (20 - 4x)  \: dx \\

\rm \:  =  \:  \frac{1}{5}\bigg[20x -4 \times  \dfrac{ {x}^{2} }{2} \bigg] _2^5 \\

\rm \:  =  \:  \frac{1}{5}\bigg[20x -   {2x}^{2} \bigg] _2^5 \\

\rm \:  =  \:  \frac{1}{5}\bigg[20(5 - 2) -   2({5}^{2} -  {2}^{2}) \bigg]  \\

\rm \:  =  \:  \frac{1}{5}\bigg[20 \times 3 -  2(25 - 4) \bigg]  \\

\rm \:  =  \:  \frac{1}{5}\bigg[60 -  2(21) \bigg]  \\

\rm \:  =  \:  \frac{1}{5}\bigg[60 -  42 \bigg]  \\

\rm \:  =  \:  \frac{1}{5} \times 18\\

\rm \:  =  \:  3.6 \: square \: units\\

Hence,

\bf\implies \:Required\:Area  =  \:  3.6 \: square \: units\\ \\

\rule{190pt}{2pt}

Alternative Method :-

\rm \: Required\:Area \: of \:  \triangle \: ABC \\

\rm \:  =  \: \dfrac{1}{2}  \times AB \times BC \\

\rm \:  =  \: \dfrac{1}{2}  \times 2.4 \times 3 \\

\rm \:  =  \: 1.2 \times 3 \\

\rm \:  =  \: 3.6 \: square \: units \\

Hence,

\bf\implies \:Required\:Area  =  \:  3.6 \: square \: units\\ \\

Attachments:
Similar questions