Math, asked by meghakharbikar05, 1 month ago

Hello
please solve this ​

Attachments:

Answers

Answered by Anonymous
96

Step-by-step explanation:

✞︎ Given

  • In ThE Attachment

✞︎We Know,

DC = 6

BC= 15

✞︎To Find

A(ABD) : A (ABC)

Solution

ABC, ABD, ADC all have same height-h

  • Buse length of ∆ABC = 15

Buse length of ∆ABC = 15}

  • Buse length of ∆ADC = 6

\tt\large\underline{\longmapsto \: Buse \:  length  \: of  \: ∆ADC = 6}

.

\tt\large\underline{ \longmapsto\: Base  \: Length \:  Of \:  ∆ABD =9}

\tt\large\underline{\longmapsto \: Area \:  Cy  \: Of ∆ABC =  \frac{1}{2} \times h \times 15 }

\tt\large\underline\red{\longmapsto \: Area \:  of  \: ∆ABD = \frac{1}{2} \times h \times 9  }

\tt\large\underline{\longmapsto \: Area \: of \: ∆ADC  =  \frac{1}{2}  \times h \times 6}

A(ABD): A(ABC)=

\tt\large\underline{\longmapsto( \frac{1}{2}  \times h \times 9)}

\tt\large\underline{ \longmapsto(\frac{1}{2} \times h \times 15) }

\tt\large\underline\red{\longmapsto=3:5}

Hence AnS is 3:5

 \:

Hope It Helps!

IY

ITIO IOTIO-

\tt\large\underline\pink{ \longmapsto\: Perimeter  \: of \:  Equilateral \:  Triangle \: : P = 3a.}

\large{✰} \bf \underline\color{brown}{\longmapsto \: Area \:  of \:  Equilateral \:  Triangle: K = ( \frac{1}{4}   \times  \sqrt{3}   \times  a. }

\tt\large\underline\purple{\longmapsto \: In \:  an \:  equilateral  \: triangle  \: ABC, AB = BC = CA.}

Kindly Scrool Right For Further Sol.

Answered by juwairiyahimran18
4

✞︎We Know,

➪∆DC = 6

➪∆BC= 15

✞︎To Find

A(ABD) : A (ABC)

Solution

∆ABC, ∆ABD, ∆ADC all have same height-h

\tt\large\underline{\longmapsto \: Buse \: length \: of \: ∆AbC = 15} \tt\large\underline{\longmapsto \: Buse \: length \: of \: ∆ADC = 6}

\tt\large\underline{ \longmapsto\: Base \: Length \: Of \: ∆ABD =9} \tt\large\underline{\longmapsto \: Area \: Cy \: Of ∆ABC = \frac{1}{2} \times h \times 15 } \tt\large\red{\longmapsto \: Area \: of \: ∆ABD = \frac{1}{2} \times h \times 9 } \tt\large\underline{\longmapsto \: Area \: of \: ∆ADC = \frac{1}{2} \times h \times 6}

A(∆ABD) : A(ABC) =

\tt\large{\longmapsto( \frac{1}{2} \times h \times 9)} \tt\large\underline{ \longmapsto(\frac{1}{2} \times h \times 15) } \tt\large\red{\longmapsto=3:5}

Hence AnS is 3:5 .

Similar questions