Math, asked by Anonymous, 10 months ago

HELLO


QUESTION: FACTORISE​

Attachments:

Answers

Answered by hukam0685
7

Step-by-step explanation:

1)4 {p}^{2}  - 9 {q}^{2}  \\  \\ ( {2p)}^{2}  - ( {3q)}^{2}  \\  \\ apply \: identity \\  {x}^{2}  -  {y}^{2}  = (x + y)(x  - y) \\  \\ ( {2p)}^{2}  - ( {3q)}^{2} = (2p + 3q)(2p - 3q) \\  \\ \bold{4 {p}^{2}  - 9 {q}^{2} = (2p + 3q)(2p - 3q)} \\  \\

2)63 {a}^{2}  - 112 {b}^{2}  \\  \\ 7 \times 9 {a}^{2}  - 7 \times 16 {b}^{2}  \\  \\ 7(( {3a)}^{2}  - ( {4b)}^{2} ) \\  \\\bold{ 63 {a}^{2}  - 112 {b}^{2} = 7(3a + 4b)(3a - 4b)} \\  \\

3) \: 49 {x}^{2}  - 36 \\  \\ ( {7x)}^{2}  - ( {6)}^{2}  \\  \\\bold{49 {x}^{2}  - 36  = (7x + 6)(7x - 6)} \\  \\

4) \: 16 {x}^{5} -  144 {x}^{3}  \\  \\ taking \:  {x}^{3}  \: common \\  \\  {x}^{3} (( {4a)}^{2}  - ( {12)}^{2} ) \\  \\ or \\  \\ 16 {x}^{3} ( {a}^{2}  - ( {3)}^{2}) \\  \\\:\bold{16 {x}^{5} -  144 {x}^{3} =   16 {x}^{3}(a - 3)(a + 3)} \\  \\

5) \: ( {l + m)}^{2}  -  {(l - m)}^{2}  \\  \\ (l + m + l - m)(l + m - l + m) \\  \\( 2l)(2m) \\  \\ \bold{( {l + m)}^{2}  -  {(l - m)}^{2} = 4lm} \\  \\

6) \: 9 {x}^{2}  {y}^{2}  - 16 \\  \\ ( {3xy)}^{2}  - ( {4)}^{2}  \\  \\ (3xy + 4)(3xy - 4) \\  \\\bold{ 9 {x}^{2}  {y}^{2}  - 16 = (3xy + 4)(3xy - 4)} \\  \\

7)( {x}^{2}  - 2xy +  {y}^{2} ) -  {z}^{2}  \\  \\ since \\  \\ ( {x}^{2}  - 2xy +  {y}^{2} ) = ( {x - y)}^{2}  \\  \\ so \\  \\ ( {x - y)}^{2} -  {z}^{2}  = (x - y + z)(x - y - z) \\  \\\bold{ ( {x}^{2}  - 2xy +  {y}^{2} ) -  {z}^{2} =  (x - y + z)(x - y - z)} \\  \\

8) \: 25 {a}^{2}  - 4 {b}^{2}  + 28bc - 49 {c}^{2}  \\  \\ 25 {a}^{2}  - (4 {b}^{2}  - 28bc + 49 {c}^{2} ) \\  \\ 25 {a}^{2}  - ( {(2b)}^{2}  - 2(2b)(7c) +  {(7c)}^{2} ) \\  \\  {(5a)}^{2} - ( {2b - 7c)}^{2}  \\  \\ (5a  + 2b - 7c)(5a - 2b  + 7c) \\  \\ \: \bold{25 {a}^{2}  - 4 {b}^{2}  + 28bc - 49 {c}^{2} = (5a  + 2b - 7c)(5a - 2b  + 7c)} \\  \\

Hope it helps you.

Answered by Anonymous
54

Step-by-step explanation:

refers to the attachment

Attachments:
Similar questions