Math, asked by Brâiñlynêha, 10 months ago

Hello‼️

Solve it by rationalization..❗

Answer:= (-1.466)

So solve ...✅

❌❌no spams ...❌❌​

Attachments:

prathamuttekar27: we have to do only by rationalizing???
Brâiñlynêha: hm .
prathamuttekar27: wait i will try in book
Brâiñlynêha: kk
Shirak432: I not understand the question
prathamuttekar27: plz.. give brainlist..
prathamuttekar27: sis and dont forget to follow me..
Brâiñlynêha: sorry bro
prathamuttekar27: y sis
prathamuttekar27: ok your wish by

Answers

Answered by Anonymous
13

  {\boxed { \tt solution \ratio - }}

Hlo Neha♡

here is ur answer : )

 \tt \frac{1 }{ \sqrt{3}  -  \sqrt{2} - 1  }  =  \frac{1}{ \sqrt{3} ( \sqrt{2} + 1) }  \times  \frac{ \sqrt{3}  +  (\sqrt{2} + 1) }{ \sqrt{3}  +  \sqrt{(2}  + 1)}  \:  \: [rationalise ]

 \tt =      \frac{ \sqrt{3}  +  \sqrt{2} + 1}{ (\sqrt{3 {)}^{2} }   -  (\sqrt{2}  + 1 {)}^{2} }  \:  \: [ \therefore (a - b)(a + b) =  {a}^{2} -  {b}^{2}    ]

 \tt  =  \frac{ \sqrt{3}  +  \sqrt{2} + 1}{3 -(2 + 1 + 2 \sqrt{2} ) }

 \tt  =  \frac{ \sqrt{3}  +  \sqrt{2} + 1}{ - 2 \sqrt{2}   } \times   \frac{ \sqrt{2} }{ \sqrt{2} }

 \tt  =  \frac{  \sqrt{6}  + 2 +  \sqrt{2} }{ -4  }

 \tt  =  \frac{   - (2.499 + 2 + 1.414) }{ 4  }

 \tt  =  \frac{   - 5.863 }{ 4  }

 \boxed{  \tt  =   - 1.466}

Attachments:
Answered by RockingStarPratheek
421

\sf{\displaystyle\frac{1}{\sqrt{3}-\sqrt{2}-1}}

We need to rationalize the denominator by removing radicals from it. In our example, the denominator contains 2 radical terms.

It needs to be multiplied by an expression that completes the product on the left side of the difference of two squares rule : \sf{A^{2}-B^{2}=(A-B)(A+B)}

\to\sf{\displaystyle \frac{1}{\sqrt{3}-\sqrt{2}-1} \cdot \frac{\sqrt{3}-\sqrt{2}+1}{\sqrt{3}-\sqrt{2}+1}}

\to\sf{\displaystyle\frac{(\sqrt{3}-\sqrt{2})+1}{(\sqrt{3}-\sqrt{2}-1)((\sqrt{3}-\sqrt{2})+1)}}

\to\sf{\displaystyle\frac{\sqrt{3}-\sqrt{2}+1}{(\sqrt{3}-\sqrt{2}-1)(\sqrt{3}-\sqrt{2}+1)}}

We need to expand this term by multiplying two expressions. The following product distributive property will be used : \sf{(A+B)(C+D)=A C+A D+B C+B D} .

\to\sf{\displaystyle\frac{\sqrt{3}-\sqrt{2}+1}{\sqrt{3}\cdot \sqrt{3}-\sqrt{3}\:\cdot \:\sqrt{2}+\sqrt{3}-\sqrt{2}\:\cdot \:\sqrt{3}+\sqrt{2}\:\cdot \:\sqrt{2}-\sqrt{2}}}

We need to combine all radicands in this term, under one radical sign. This is possible, because all the indexes are equal .

\to\sf{\displaystyle\frac{\sqrt{3}-\sqrt{2}+1}{\sqrt{3\:\cdot \:3}-\sqrt{3\:\cdot \:2}+\sqrt{3}-\sqrt{2\:\cdot \:3}+\sqrt{2\:\cdot \:2}-\sqrt{2}-\sqrt{3}+\sqrt{2}-1}}

We need to combine like factors in this term by adding up all the exponents and copying the base. No exponent implies the value of 1.

\to\sf{\displaystyle\frac{\sqrt{3}-\sqrt{2}+1}{\sqrt{3^{1+1}}-\sqrt{3\:\cdot \:2}+\sqrt{3}-\sqrt{2\:\cdot \:3}+\sqrt{2^{1+1}}-\sqrt{2}-\sqrt{3}+\sqrt{2}-1}}

\to\sf{\displaystyle\frac{\sqrt{3}-\sqrt{2}+1}{\sqrt{3^2}-\sqrt{3\:\cdot \:2}+\sqrt{3}-\sqrt{2\:\cdot \:3}+\sqrt{2^2}-\sqrt{2}-\sqrt{3}+\sqrt{2}-1}}

We can simplify a radical by removing the GCF between the exponent in the radicand and the radical index. In our example, the exponent in the radicand is equal to 2 , the radical index is equal to 2 and the greatest common factor is equal to 2. Since the GCF is equal to the radical index, we can completely remove the radical sign.

\to\sf{\displaystyle\frac{\sqrt{3}-\sqrt{2}+1}{3^{\frac{2}{2}}-\sqrt{3\:\cdot \:2}+\sqrt{3}-\sqrt{2\:\cdot \:3}+2^{\frac{2}{2}}-\sqrt{2}-\sqrt{3}+\sqrt{2}-1}}

Reduce this fraction to the lowest terms.  This can be done by dividing out those factors that appear both in the numerator and in the denominator.

\to\sf{\displaystyle\frac{\sqrt{3}-\sqrt{2}+1}{3-\sqrt{3\:\cdot \:2}+\sqrt{3}-\sqrt{2\:\cdot \:3}+2-\sqrt{2}-\sqrt{3}+\sqrt{2}-1}}

\to\sf{\displaystyle\frac{\sqrt{3}-\sqrt{2}+1}{3-\sqrt{3\:\cdot \:2}+\sqrt{3}-\sqrt{3\cdot 2}+2-\sqrt{2}-\sqrt{3}+\sqrt{2}-1}}

\to\sf{\displaystyle\frac{\sqrt{3}-\sqrt{2}+1}{-\sqrt{3\:\cdot \:2}-\sqrt{3\:\cdot \:2}+\sqrt{3}-\sqrt{3}-\sqrt{2}+\sqrt{2}+3+2-1}}

\to\sf{\displaystyle\frac{\sqrt{3}-\sqrt{2}+1}{-2\sqrt{3\cdot \:2}+\sqrt{3}-\sqrt{3}-\sqrt{2}+\sqrt{2}+3+2-1}}

\to\sf{\displaystyle\frac{\sqrt{3}-\sqrt{2}+1}{-2\sqrt{3\cdot \:2}+\sqrt{3}-\sqrt{3}+3+2-1}}

\to\sf{\displaystyle\frac{\sqrt{3}-\sqrt{2}+1}{-2\sqrt{3\cdot \:2}+3+2-1}}

\to\sf{\displaystyle\frac{\sqrt{3}-\sqrt{2}+1}{-2\sqrt{6}+3+2-1}}

\to\sf{\displaystyle\frac{\sqrt{3}-\sqrt{2}+1}{-2\sqrt{6}+4}}

Repeat This Step : We need to rationalize the denominator by removing radicals from it .........................

\to\sf{\displaystyle\frac{\left(\sqrt{3}-\sqrt{2}+1\right)\left(4+2\sqrt{6}\right)}{\left(4-2\sqrt{6}\right)\left(4+2\sqrt{6}\right)}}

\to\sf{\displaystyle\frac{\sqrt{3}\cdot \:4+\sqrt{3}\cdot \:2\sqrt{6}+\left(-\sqrt{2}\right)\cdot \:4+\left(-\sqrt{2}\right)\cdot \:2\sqrt{6}+1\cdot \:4+1\cdot \:2\sqrt{6}}{\left(4-2\sqrt{6}\right)\left(4+2\sqrt{6}\right)}}

\to\sf{\displaystyle\frac{4\sqrt{3}+2\sqrt{3}\sqrt{6}-4\sqrt{2}-2\sqrt{2}\sqrt{6}+1\cdot \:4+1\cdot \:2\sqrt{6}}{\left(4-2\sqrt{6}\right)\left(4+2\sqrt{6}\right)}}

\to\sf{\displaystyle\frac{4\sqrt{3}+6\sqrt{2}-4\sqrt{2}-4\sqrt{3}+4+2\sqrt{6}}{\left(4-2\sqrt{6}\right)\left(4+2\sqrt{6}\right)}}

\to\sf{\displaystyle\frac{4\sqrt{3}+2\sqrt{2}-4\sqrt{3}+4+2\sqrt{6}}{\left(4-2\sqrt{6}\right)\left(4+2\sqrt{6}\right)}}

\to\sf{\displaystyle\frac{2\sqrt{2}+4+2\sqrt{6}}{\left(4-2\sqrt{6}\right)\left(4+2\sqrt{6}\right)}}

\to\sf{\displaystyle\frac{2\sqrt{2}+4+2\sqrt{6}}{4^2-\left(2\sqrt{6}\right)^2}}

\to\sf{\displaystyle\frac{2\sqrt{2}+4+2\sqrt{6}}{16-24}}

\to\sf{\displaystyle\frac{2\sqrt{2}+4+2\sqrt{6}}{-8}}

\to\sf{-\displaystyle\frac{2\sqrt{2}+4+2\sqrt{6}}{8}}

\to\sf{\displaystyle\frac{2\left(\sqrt{2}+2+\sqrt{6}\right)}{8}}

\to\sf{\displaystyle\frac{\sqrt{2}+2+\sqrt{6}}{4}}

Given : \sf{\sqrt{2}} = 1.414 and \sf{\sqrt{6}} = 2.449

\to\sf{\displaystyle\frac{1.414+2+2.449}{4}}

\to\sf{\displaystyle\frac{5.863}{4}}

\large\boxed{\boxed{\to\sf{-1.466}}}

Similar questions