Math, asked by pv8589536, 11 months ago

hello solve it please please​

Attachments:

Answers

Answered by vaibhavthakur29
1

Answer:

fxjhfoeaychkyfidtisxkgdutdmvegjdsg8ye

Answered by Amazonalexa
0

Answer:

\red {\huge {\underline{ \frak{Your \: answEr : }}}}

YouranswEr:

\blue{\huge \implies \boxed{\beta \in(1 \: ,∞)}}⟹

β∈(1,∞)

\red {\huge {\underline{ \frak{Explanation : }}}}

Explanation:

\green{\large{ \underline{\mathcal{\star \:Given : }}}}

⋆Given:

\begin{lgathered}\tt{\alpha \: \beta \: are \: real \: number} \\ z \: \tt{is \: a \: complex \: number}\end{lgathered}

αβarerealnumber

zisacomplexnumber

\begin{lgathered}{z}^{2} + \alpha z + \beta = 0 \: \tt{has \: two \: distinct} \\ \tt{roots \: on} \: \: \mathcal{R_ez = 1}\end{lgathered}

z

2

+αz+β=0hastwodistinct

rootsonR

e

z=1

\green{\large{ \underline{\mathcal{\star \: To \: Find : }}}}

⋆ToFind:

\tt{value \: of \: \beta }valueofβ

\green{\large{ \underline{\mathcal{\star \: Solution : }}}}

⋆Solution:

\blacksquare \: \underline\frak{Quick \: Facts}■

QuickFacts

• If the roots are ax² + bx + c = 0 are Distinct and Complex, then Discriminent D < 0

• D = b² - 4ac

\blacksquare \: \underline\frak{Now \: head \: to \: the \: Question}■

NowheadtotheQuestion

★ Roots of the Equation ;

\huge z = \frac{ - \alpha ± \sqrt{ { \alpha }^{2} - 4 \beta } }{2}z=

2

−α±

α

2

−4β

★ Since z is Complex ;

\huge D = { \alpha }^{2} - 4 \beta < 0D=α

2

−4β<0

★ Also Given that ;

\huge R_ez = 1 \: , \: \frac{ - \alpha }{2} = 1R

e

z=1,

2

−α

=1

\large\implies \alpha = - 2⟹α=−2

\begin{lgathered}\large \therefore 4 - 4 \beta < 0 \\ \: \: \: \: \: \beta > 1\end{lgathered}

∴4−4β<0

β>1

\purple{\large \implies \boxed{\beta \in(1 \: ,∞)}}⟹

β∈(1,∞)

\huge{\red{\ddot{\smile}}}

¨

Similar questions