Math, asked by MisterIncredible, 6 months ago

Hello ^_^


Subject : Maths
Chapter : Trigonometry

The equation sin² x = (a²+b²)/(2ab), is possible if

(a) a = b
(b) a = -b
(c) 2a = b
(d) None of these ​

Answers

Answered by tennetiraj86
18

Answer:

a=b

Step-by-step explanation:

Given equation is sin²x=(+)/(2ab) is possible for a=b

1)If a=b then

sin²x=(+)/(2×b×b)

=>sin²x=2b²/2b²

=>sin²x=1

=>(sinx)²=1

=>sin x=1

=>Sin x=Sin 90°

x=90°

2) if a=-b then

sin² x=((-b)²+)/(2×-b×b)

=>sin² x=2b²/-2b²

=>sin² x=-1

=>sin x=-1

so the square root of -1 is not a real number.

3) If 2a =b then

sin² x=(+(2a)²)/(2×a×2a)

=>sin² x=(+4a²)/(4a²)

=>sin² x=5a²/4a²

=>sin² x=5/4

=>sin x=5/4

so,The equation sin² x = (a²+b²)/(2ab), is possible if a=b


MisterIncredible: Thanks a lot ❤️
tennetiraj86: welcome
Answered by Seafairy
60

Given :

\displaystyle {\sf sin^2 x=\frac{(a^2+b^2)}{2ab}} is possible if :

  • \sf{a=b}
  • \sf{a=-b}
  • \sf{2a=b}
  • \sf{None\:of\:these}

Solution :

\large{\sf{a)a=b}}

  • Substitute the value of a or b in place of a or b in the given equation.

\implies \displaystyle {\sf sin^2 x= \frac{(a^2+b^2)}{2ab}}

\implies \displaystyle \sf{sin ^2x = \frac{a^2+a^2 }{2 \times a \times a}}

\implies \displaystyle {\sf sin^2 x = \frac{\cancel{2a^2 }}{\cancel{2a^2}}}

\implies \sf sin^2 x = 1

\implies \sf sin^2 x= 1

\boxed{\sf sinx = 90 ^{\circ}}

____________________________________

\large{\sf{  b)a=-b}}

  • Substitute -b in place of a in the given equation.

\implies \displaystyle {\sf sin^2 x=\frac{(a^2+b^2)}{2ab}}

\implies \displaystyle {\sf sin^2 x=\frac{\Big((-b)^2+(b)^2\Big)}{2\times -b \times b}}

\implies \displaystyle {\sf sin^2 x = \frac{\cancel{2b^2 }}{- \cancel{2b^2}}}

\implies \sf sin^2 x = -1

\boxed{ \sf{ sin x = \sqrt{-1}}}

____________________________________

\large{\sf{c) 2a=b}}

  • Substitute 2a in place of b in the given equation.

\implies \displaystyle {\sf sin^2 x=\frac{(a^2+b^2)}{2ab}}

\implies \displaystyle {\sf sin^2 x=\frac{\Big(a^2+(2a)^2\Big)}{2 \times a \times 2a}}

\implies \displaystyle {\sf sin^2 x=\frac{(a^2+4a^2)}{4a^2 }}

\implies \displaystyle {\sf sin^2 x=\frac{(5\cancel{a^2} )}{4\cancel {a^2}}}

\implies \displaystyle {\sf sin^2 x = \frac{5}{4}}

\displaystyle {\boxed{\sf sin x = \frac{\sqrt{5}}{2} }}

____________________________________

Required Answer :

The equation \displaystyle {\sf sin^2 x=\frac{(a^2+b^2)}{2ab}} is possible if \sf{\underline {a=b}}

Similar questions