Math, asked by adidasnike, 1 year ago

Helo help me prove question

Attachments:

Answers

Answered by NidhraNair
2
hello..



please refer the above attachment...




thank you...
Attachments:
Answered by jaya1012
0
hii. ....friend

the answer is here,

I take lambda as x.

Sin2A =x Sin2B.

=> Sin2A/Sin2B= x/1.

By componendo & dividendo.


 =  >  \:  \frac{ \sin(2a)   + \sin(2b) }{ \sin(2a) -  \sin(2b)  }  =  \frac{x + 1}{x - 1}

By using formulas,

 =  >  \:  \sin(c )  +  \sin(d)  = 2 \sin( \frac{c + d}{2} ) . \cos( \frac{c - d}{2} )
And

 =  >  \:  \sin(c)  -  \sin(d)  = 2 \sin( \frac{c - d}{2}). \cos( \frac{c + d}{2})
We get ,

 =  >  \:  \frac{2 \sin( \frac{2a + 2b}{2}) \cos( \frac{2a - 2b}{2}  )  }{2 \sin( \frac{2a - 2b}{2} )  \cos( \frac{2a + 2b}{2} ) }  =  \frac{x + 1}{x - 1}

 =  >  \:  \frac{ \sin(a + b)  \cos(a - b) }{ \cos(a + b)  \sin(a - b) }  =  \frac{x + 1}{x - 1}

 =  >  \:  \tan(a + b) . \cot(a - b)  =  \frac{x + 1}{x - 1}

 =  >  \:   \frac{ \tan(a + b) }{ \tan(a - b) }  =  \frac{x + 1}{x - 1}


:-)Hope it helps u.
Similar questions