Math, asked by Anonymous, 1 year ago

HELO ❤️
___________________________
If f(x) = log (1+x/1-x),-1<x<1,thenf(3x+x^2/1+3x^2) - f(2x/1+x^2) is

a) [f(x)] ^3 b) [f(x)]^2
c) - f(x) d) f(x)

Find the correct option nd explain it step by step :
_____________________________

Don't spam ☺️​

Answers

Answered by Anonymous
13

Step-by-step explanation:

hope it help you dear.....✌️✌️✌️✌️✌️✌️

Attachments:
Answered by shadowsabers03
20

Question:

If  f(x)=\log\left(\dfrac{1+x}{1-x}\right)  where  -1&lt;x&lt;1,

then  f\left(\dfrac{3x+x^3}{1+3x^2}\right)-f\left(\dfrac{2x}{1+x^2}\right)\ =\ ?

Solution:

We have  f(x)\ =\ \log\left(\dfrac{1+x}{1-x}\right).

So,

\begin{aligned}&amp;f\left(\dfrac{3x+x^3}{1+3x^2}\right)\\ \\ \Longrightarrow\ \ &amp;\log\left(\dfrac{1+\left(\dfrac{3x+x^3}{1+3x^2}\right)}{1-\left(\dfrac{3x+x^3}{1+3x^2}\right)}\right)\\ \\ \Longrightarrow\ \ &amp;\log\left(\dfrac{\left(\dfrac{1+3x+3x^2+x^3}{1+3x^2}\right)}{\left(\dfrac{1-3x+3x^2-x^3}{1+3x^2}\right)}\right)\\ \\ \Longrightarrow\ \ &amp;\log\left(\dfrac{(1+x)^3}{(1-x)^3}\right)\end{aligned}

\begin{aligned}\Longrightarrow\ \ &amp;\log\left(\dfrac{1+x}{1-x}\right)^3\\ \\ \Longrightarrow\ \ &amp;3\log\left(\dfrac{1+x}{1-x}\right)\\ \\ \Longrightarrow\ \ &amp;3f(x)\end{aligned}

And,

\begin{aligned}&amp;f\left(\dfrac{2x}{1+x^2}\right)\\ \\ \Longrightarrow\ \ &amp;\log\left(\dfrac{1+\left(\dfrac{2x}{1+x^2}\right)}{1-\left(\dfrac{2x}{1+x^2}\right)}\right)\\ \\ \Longrightarrow\ \ &amp;\log\left(\dfrac{\left(\dfrac{1+2x+x^2}{1+x^2}\right)}{\left(\dfrac{1-2x+x^2}{1+x^2}\right)}\right)\\ \\ \Longrightarrow\ \ &amp;\log\left(\dfrac{(1+x)^2}{(1-x)^2}\right)\end{aligned}

\begin{aligned}\Longrightarrow\ \ &amp;\log\left(\dfrac{1+x}{1-x}\right)^2\\ \\ \Longrightarrow\ \ &amp;2\log\left(\dfrac{1+x}{1-x}\right)\\ \\ \Longrightarrow\ \ &amp;2f(x)\end{aligned}

Now,

\begin{aligned}&amp;f\left(\dfrac{3x+x^3}{1+3x^2}\right)-f\left(\dfrac{2x}{1+x^2}\right)\\ \\ \Longrightarrow\ \ &amp;3f(x)-2f(x)\\ \\ \Longrightarrow\ \ &amp;\mathbf{f(x)}\end{aligned}

Hence the answer is (d) f(x).


Anonymous: Awesome :)
shadowsabers03: Thank you.
Similar questions