heloo✌️
( let singularity means 0+ ifinite)
(and let infinite means 0.11×0.11^2)
and let zero means time
and let time means (((infinite×0.1883))
then solver 0÷ singularity.
give me answer
if you give me wrong one I I'll report that
Answers
Answer:
Suppose that completely stopping a subatomic particle, such as an electron, could happen under certain conditions. What would be likely ways to get an electron to be perfectly still, or even just stop rotating the nucleus and collapse into it by electromagnetic forces? What would likely be required, below absolute-zero temperatures? Negative energy? Or could a 0 energy rest state not exist in any form, of any possible universe imaginable?
Let's say there was a magnetic field of a certain shape that we could postulate that is so intensely strong that if we put an electron in the center of it, it could not move at all in any direction. Would the energy requirement of the field be infinite? What would be the particle's recourse under this condition?
Further, suppose it were possible and one could trap an electron and stop all motion completely. What would this do to Heisenberg's Uncertainty Principle and/or Quantum Mechanics, because its position and momentum (0) would both be known? If it can be done, is Quantum Mechanics no longer an accurate model of reality under these conditions? Could we say QM is an accurate model under most conditions, except where it is possible to measure both position and momentum of a particle with zero uncertainty?
Clarification: