helooo frnds....plzzz solve fast
if a and b are roots of quadratic equation x^2-2x+5=0 then form an equation whose roots are a^3+b^2-a+22 and b^3+4b^2-7b+35
ranjeetakatarep9sk2l:
sry, I doesn't know maths and i hate and ur all questions are about maths.
Answers
Answered by
2
HELLO FRIEND HERE IS UR ANSWER ☺️☺️
given equation x2−2x+3=0
⇒x=2±√22−4⋅1⋅32=1±√2i
Let α=1+√2iandβ=1−√2i
Now let
γ=α3−3α2+5α−2
⇒γ=α3−3α2+3α−1+2α−1
⇒γ=(α−1)3+α−1+α
⇒γ=(√2i)3+√2i+1+√2i
⇒γ=−2√2i+√2i+1+√2i=1
And let
δ=β3−β2+β+5
⇒δ=β2(β−1)+β+5
⇒δ=(1−√2i)2(−√2i)+1−√2i+5
⇒δ=(−1−2√2i)(−√2i)+1−√2i+5
⇒δ=√2i−4+1−√2i+5=2
So the quadratic equation having roots
x2−(γ+δ)x+γδ=0
⇒x2−(1+2)x+1⋅2=0
⇒x2−3x+2=0
hope helps
given equation x2−2x+3=0
⇒x=2±√22−4⋅1⋅32=1±√2i
Let α=1+√2iandβ=1−√2i
Now let
γ=α3−3α2+5α−2
⇒γ=α3−3α2+3α−1+2α−1
⇒γ=(α−1)3+α−1+α
⇒γ=(√2i)3+√2i+1+√2i
⇒γ=−2√2i+√2i+1+√2i=1
And let
δ=β3−β2+β+5
⇒δ=β2(β−1)+β+5
⇒δ=(1−√2i)2(−√2i)+1−√2i+5
⇒δ=(−1−2√2i)(−√2i)+1−√2i+5
⇒δ=√2i−4+1−√2i+5=2
So the quadratic equation having roots
x2−(γ+δ)x+γδ=0
⇒x2−(1+2)x+1⋅2=0
⇒x2−3x+2=0
hope helps
Similar questions