Math, asked by lovemylife, 1 year ago

help.........................​

Attachments:

Answers

Answered by Anonymous
3

x+y = 1

xy( xy -2) = 12

x {}^{4}  + y {}^{4}  \\  \\( x {}^{2}  + y {}^{2} ) {}^{2}  - 2x {}^{2} y {}^{2}  \\  \\ ((x + y) {}^{2}  - 2xy) {}^{2}  - 2x {}^{2} y {}^{2}  \\  \\ (x + y) {}^{4}  + 4x {}^{2} y {}^{2}  - 4(x + y) {}^{2} xy - 2x {}^{2} y {}^{2}  \\  \\ (x + y) {}^{4}  - 4(x + y) {}^{2} xy + 2x {}^{2} y {}^{2}  \\  \\ as \: x + y = 1 \: and \: xy(xy - 2) = 12 \\  \\ x {}^{2} y {}^{2}  - 2xy = 12 \\  \\ (x + y) {}^{4}  - 4(x + y) {}^{2}xy + 2x {}^{2}  y {}^{2}  \\  \\ 1 - 4xy + 2x {}^{2} y {}^{2}  \\  \\ 1  +  2( - 2xy  + x {}^{2} y {}^{2} ) \\  \\ =  1 + 2(12) \\  \\ =  1 + 24 \\  \\  = 25

Answered by shadowsabers03
7

Given,

x+y=1\ \ \&\ \ xy(xy-2)=12

We have to find,

x^4+y^4.

First let me take the product given. Means, let me find the value of xy first.

xy(xy-2)=12

This product can be written as,

(xy-1+1)(xy-1-1)=12

Here, let  xy-1=k.

So the equation becomes,

(k+1)(k-1)=12

On expanding the LHS, we get,

k^2-1=12\ \ \Longrightarrow\ \ k^2=13\ \ \Longrightarrow\ \ k=\sqrt{13}

Taking the value of k that we considered,

xy-1=\sqrt{13}\ \ \Longrightarrow\ \ xy=1+\sqrt{13}

We got xy.  Also, we need  (xy)².

(xy)^2=(1+\sqrt{13})^2=14+2\sqrt{13}

Now, let's consider the given sum.

x+y=1

We square both sides of this equation.

(x+y)^2=1^2\ \ \Longrightarrow\ \ x^2+y^2+2xy=1

Since  \mathsf{xy=1+\sqrt{13}\ \ \Longrightarrow\ \ 2xy=2+2\sqrt{13}\ ,}  we subtract the corresponding sides from our equation. I.e.,

x^2+y^2+2xy-2xy=1-(2+2\sqrt{13})\\ \\ \Longrightarrow\ x^2+y^2=-1-2\sqrt{13}

Repeat the same procedure again by squaring both sides again.

(x^2+y^2)^2=(-1-2\sqrt{13})^2\ \ \Longrightarrow\ \ x^4+y^4+2(xy)^2=53+4\sqrt{13}

And we have  (xy)^2=14+2\sqrt{13}\ \ \Longrightarrow\ \ 2(xy)^2=28+4\sqrt{13}.  As we did ago,  we subtract corresponding sides from our equation. I.e.,

x^4+y^4+2(xy)^2-2(xy)^2=53+4\sqrt{13}-(28+4\sqrt{13})\\ \\ \Longrightarrow\ x^4+y^4=53+4\sqrt{13}-28-4\sqrt{13}=\bold{25}

Thus the answer is 25.

Similar questions