help!!!!!!!
Find the roots of the above quadratic equations ( if they exist) by using quadratic formula.
#Onlyappropriateanswers
Attachments:
![](https://hi-static.z-dn.net/files/db4/f22bdf9e8a30547cfff3ee7056858d62.jpg)
Answers
Answered by
0
Hope u like my process
=====================
(ii) x² - 2ax +(a² - b²) =0
or, x² - 2ax + (a +b) (a-b) =0
or, x² - {(a+b) +(a-b)}x + (a+b) (a-b) =0
or, x² - (a+b)x - (a-b)x + (a +b) (a-b) =0
or, x{x-(a+b)} - (a-b) {x-(a+b)} =0
or, (x- a-b) (x - a +b) =0
So... The possible roots are..
x = a + b
and
x = a - b.
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
(iii)
![\frac{1}{x + 1} + \frac{2}{x + 2} = \frac{4}{x + 4} \\ or. \: \frac{(x + 2) + 2(x + 1)}{(x + 2)(x + 1)} = \frac{4}{x + 4} \\ or. \: \frac{3x + 4}{( {x}^{2} + 3x + 2) } = \frac{4}{x + 4} \\ or. \: (3x + 4)(x + 4) = 4( {x}^{2} + 3x + 2) \\ or. \: 3 {x}^{2} + 4x + 12x + 16 = 4 {x}^{2} + 12x + 8 \\ or. \: {x}^{2} - 4x - 8 = 0 \\ \\ by \: shreedhar \: acharyas \: formula \: \: \\ x = \frac{ - ( - 4) + - \sqrt{ {( - 4)}^{2} - 4 \times 1 \times ( - 8)} }{2 \times 1 } \\ = (4 + - \sqrt{16 + 32} ) \div 2 \\ = \frac{4 + - \sqrt{48} }{2} = \frac{4 + - (6.92)}{2} \\ so ...either \: \\ x = (4 + 6.92) \div 2 = \frac{10.92}{2} = 5.46 \\ \\ or..x \: = (4 - 6.92) \div 2 = - \frac{2.92}{2} = - 1.46 \frac{1}{x + 1} + \frac{2}{x + 2} = \frac{4}{x + 4} \\ or. \: \frac{(x + 2) + 2(x + 1)}{(x + 2)(x + 1)} = \frac{4}{x + 4} \\ or. \: \frac{3x + 4}{( {x}^{2} + 3x + 2) } = \frac{4}{x + 4} \\ or. \: (3x + 4)(x + 4) = 4( {x}^{2} + 3x + 2) \\ or. \: 3 {x}^{2} + 4x + 12x + 16 = 4 {x}^{2} + 12x + 8 \\ or. \: {x}^{2} - 4x - 8 = 0 \\ \\ by \: shreedhar \: acharyas \: formula \: \: \\ x = \frac{ - ( - 4) + - \sqrt{ {( - 4)}^{2} - 4 \times 1 \times ( - 8)} }{2 \times 1 } \\ = (4 + - \sqrt{16 + 32} ) \div 2 \\ = \frac{4 + - \sqrt{48} }{2} = \frac{4 + - (6.92)}{2} \\ so ...either \: \\ x = (4 + 6.92) \div 2 = \frac{10.92}{2} = 5.46 \\ \\ or..x \: = (4 - 6.92) \div 2 = - \frac{2.92}{2} = - 1.46](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7Bx+%2B+1%7D+++%2B++%5Cfrac%7B2%7D%7Bx+%2B+2%7D++%3D++%5Cfrac%7B4%7D%7Bx+%2B+4%7D++%5C%5C+or.+%5C%3A++%5Cfrac%7B%28x+%2B+2%29+%2B+2%28x+%2B+1%29%7D%7B%28x+%2B+2%29%28x+%2B+1%29%7D++%3D++%5Cfrac%7B4%7D%7Bx+%2B+4%7D++%5C%5C+or.+%5C%3A++%5Cfrac%7B3x+%2B+4%7D%7B%28+%7Bx%7D%5E%7B2%7D+%2B+3x+%2B+2%29+%7D++%3D++%5Cfrac%7B4%7D%7Bx+%2B+4%7D++%5C%5C+or.+%5C%3A+%283x+%2B+4%29%28x+%2B+4%29+%3D+4%28+%7Bx%7D%5E%7B2%7D++%2B+3x+%2B+2%29+%5C%5C+or.+%5C%3A+3+%7Bx%7D%5E%7B2%7D++%2B+4x+%2B+12x+%2B+16+%3D+4+%7Bx%7D%5E%7B2%7D++%2B+12x+%2B+8+%5C%5C+or.+%5C%3A++%7Bx%7D%5E%7B2%7D++-+4x+-+8+%3D+0+%5C%5C++%5C%5C+by+%5C%3A+shreedhar+%5C%3A+acharyas+%5C%3A+formula+%5C%3A++%5C%3A++%5C%5C+x+%3D+++++%5Cfrac%7B+-+%28+-+4%29+%2B++-++%5Csqrt%7B+%7B%28+-+4%29%7D%5E%7B2%7D++-+4+%5Ctimes+1+%5Ctimes+%28+-+8%29%7D+%7D%7B2+%5Ctimes+1+%7D++%5C%5C++%3D+%284+%2B++-++%5Csqrt%7B16+%2B+32%7D+%29++%5Cdiv+2+%5C%5C++%3D++%5Cfrac%7B4+%2B++-++%5Csqrt%7B48%7D+%7D%7B2%7D++%3D++%5Cfrac%7B4+%2B++-+%286.92%29%7D%7B2%7D++%5C%5C+so+...either+%5C%3A++%5C%5C+x+%3D+%284+%2B+6.92%29+%5Cdiv+2+%3D++%5Cfrac%7B10.92%7D%7B2%7D++%3D+5.46+%5C%5C++%5C%5C+or..x+%5C%3A++%3D+%284+-+6.92%29+%5Cdiv+2+%3D+++-+%5Cfrac%7B2.92%7D%7B2%7D++%3D+-++1.46)
Hope this is ur required answer
Proud to help you
=====================
(ii) x² - 2ax +(a² - b²) =0
or, x² - 2ax + (a +b) (a-b) =0
or, x² - {(a+b) +(a-b)}x + (a+b) (a-b) =0
or, x² - (a+b)x - (a-b)x + (a +b) (a-b) =0
or, x{x-(a+b)} - (a-b) {x-(a+b)} =0
or, (x- a-b) (x - a +b) =0
So... The possible roots are..
x = a + b
and
x = a - b.
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
(iii)
Hope this is ur required answer
Proud to help you
rakeshmohata:
thnx for the brainliest one
Similar questions