help for jee mains anz
Answers
Answer:
I think options are wrong. Correct answer is 7/10 + (-9/10)
Answer:
Third Option
Step-by-step explanation:
Given :-
(2+i)²/(3+i)
To find :-
Find the conjugate of (2+i)²/(3+i) in the form of a+i b ?
Solution :-
Given that
(2+i)²/(3+i)
On multiplying both numerator and the denominator with (3-i) then
=> [(2+i)²/(3+i)]×[(3-i)/(3-i)]
=> [(2+i)²(3-i)]/[(3+i)(3-i)]
=> [(2+i)²(3-i)]/[(3²-i²)
Since (a+b)(a-b) = a²-b²
Where, a = 3 and b = i
=> [(2+i)²(3-i)]/(9-i²)
=> [(2+i)²(3-i)]/[9-(-1)]
Since ,i² = -1
=> [(2+i)²(3-i)]/(9+1)
=> [(2+i)²(3-i)]/10
=> [{2²+i²+2(2)(i)}(3-i)]/10
Since (a+b)² = a²+2ab+b²
Where, a = 2 and b = i
=> (4+i²+4i)(3-i)/10
=> (4-1+4i)(3-i)/10
=> (3+4i)(3-i)/10
=> (9-3i+12i-4i²)/10
=> (9+9i-4(-1))/10
Since, i² = -1
=> (9+9i+4)/10
=> (13+9i)/10
=> (13/10)+ i (9/10)
We know that
The conjugate of a+ib is a-ib
So,
The conjugate of (13/10)+ i (9/10) is
(13/10)-i(9/10) => (13/10)+i (-9/10)
Answer:-
The conjugate of (13/10)+ i (9/10) is (13/10)+i (-9/10)
Used formulae:-
→The conjugate of a+ib is a-ib
→ (a+b)(a-b) = a²-b²
→ (a+b)² = a²+2ab+b²
→ i² = -1