Math, asked by Anonymous, 17 days ago

Help! Help! Hellpppp!! ​

Attachments:

Answers

Answered by llNidhill
41

Given:-

  • 3x - y = 12

Solution:-

 \frac{ {8}^{x} }{ {2}^{y} }  \\  \\  \\  \\   \\  =  \frac{(2 {}^{ 3} ) {}^{x} }{ {2}^{y} }  \\  \\  \\  \\  \\  =    \frac{2 {}^{3x} }{2 {}^{y} }  \\  \\  \\  \\  \\  = 2 {}^{3x - y}  \\  \\  \\  \\  \\  = \boxed{    {2}^{12} }

Hence, A option is correct.

Answered by TrustedAnswerer19
20

Option A is the correct answer

{\orange{ \boxed{ \boxed{ \begin{array}{cc} \bf \to \: given \:  :    \\  \\  \rm \: 3x - y = 12 \:  \:  \:  -  -  - (1) \\  \\ \sf \: we \: have \: to \:f ind   \: the \: value \: of:  \\  \\ \sf \hookrightarrow \:   \rm \:  \frac{ {8}^{x} }{ {2}^{y} } \\   \\  \red {\sf \: solution : } \\  \\  \rm \:  \frac{ {8}^{x} }{ {2}^{y} } \\  \\  \rm =  \frac{ {( {2}^{3} })^{x} }{ {2}^{y} } \\  \\  \rm =  \frac{ {2}^{3x} }{ {2}^{y} }    \\  \\  \rm =  {2}^{3x - y} \\  \\  \rm =  {2}^{12}  \:  \:  \{ \:  \sf \: from \: eqn.(1) \} \end{array}}}}}

Friend, please again check my previous answer.

One more picture is added.

Similar questions