HELP ! HELP !HELP
Factorise:
x^7y^7 - xy
Answers
Answer:
to factorize x⁷y⁷ - xy
=> xy [ x⁶y⁶ - 1 ]
=> xy [ (x²y²)³ - 1³ ] [ x³ - y³ = (x-y)(x² + xy + y²) ]
=> xy [ (x²y² - 1)(x⁴y⁴ + x²y² + 1²)
=> xy [ {(xy)² - 1²} { x⁴y⁴ + x²y² + 1} ] [x²-y²=(x+y)(x-y)]
=> xy [ (xy + 1)(xy - 1) (x⁴y⁴ + x²y² + 1 ) ]
=> xy (xy + 1)(xy - 1)(x⁴y⁴ + x²y² + 1)
Answer:
The term (x^7y^7 - xy)
To find: Factorise the given expression.
Solution:
Now we have given the expression x^7y^7 - xy.
Taking xy common, we get:
xy ( x^6y^6 - 1 )
xy ( (xy)^6 - 1 )
xy ( ((xy)^2)^3 - 1^3 )
Now we have the formula for a^3 - b^3 - (a-b)(a^2 + ab + b^2).
So applying it, we get:
xy ((xy)^2 - 1 ) (((xy)^2)^2 + (xy)^2 + 1 )
xy (xy - 1)(xy + 1)(((x^4y^4 + x^2y^2 + 1 )
Answer:
So the factors of given terms are
xy (xy - 1)(xy + 1)(((x^4y^4 + x^2y^2 + 1 )
Read more on Brainly.in - https://brainly.in/question/6425116#readmore
Step-by-step explanation: